题目描述:
An element in a sorted array can be found in O(log n) time via binary search. But suppose I rotate the sorted array at some pivot unknown to you beforehand. So for instance, 1 2 3 4 5 might become 3 4 5 1 2. Now devise a way to find an element in the rotated array in O(log n) time.
思路分析:
要求旋转后的数组查找元素的时间复杂度依然为O(lgn),就必须依然借助二分查找的思想,只是划分上有相应的改变。
代码:
#ifndef _ROTATEDARRAYSEARCH_H
#define _ROTATEDARRAYSEARCH_H
template <typename T>
int RotatedArraySearch(T seq[],int p,int r,T value)
{
int mid=(p+r)/2;
if(seq[mid]==value)
return mid;
if(p>=r && seq[mid]!=value)
return -1;
////////////
if(seq[mid]<seq[r])
{
if(value>seq[mid] && value<=seq[r])
return RotatedArraySearch(seq,mid+1,r,value);
}
else
{
if(value>seq[mid] || value<=seq[r])
return RotatedArraySearch(seq,mid+1,r,value);
}
///////////
if(seq[mid]>seq[p])
{
if(value<seq[mid] && value>=seq[p])
return RotatedArraySearch(seq,p,mid-1,value);
}
else
{
if(value<seq[mid] || value>=seq[p])
return RotatedArraySearch(seq,p,mid-1,value);
}
//////////勿忘上述条件都不满足的情况,即数组本身非递减
return -1;
}
#endif