CF 427C. Checkposts Strongly connected components

思路: 根据tarjan算法求最强连通分支,然后找出每个联通分支中的最小值,并统计其数量,乘法定理解决方法数。


#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <vector>
#include <stack>
using namespace std;

#define MEM(a,b) memset(a, b, sizeof(a))
#define _FOR_I_(_offx, _offy, _offz) for(i=_offx; i<=_offy; i+=_offz)
#define INT64 __int64

const int N = 100100;
const int E = 300300;
const int INF = 0x7fffffff;
const int MODNUM = 1000000007;

struct Node{
    int m, num;
};

int n, val[N];
vector<int> v[N];

int scc_cnt, dfs_clock;
int DFN[N], cmp[N], low[N];
stack<int> s;

Node res[N];

void tarjan(int u){
    DFN[u] = low[u] = ++dfs_clock;
    s.push(u);

    for(int i = 0; i < v[u].size(); ++ i){
        if(!DFN[ v[u][i] ]) {
            tarjan(v[u][i]);
            low[u] = min(low[u], low[ v[u][i] ]);
        }
        else if(!cmp[ v[u][i] ]){
            low[u] = min(low[u], DFN[ v[u][i] ]);
        }
    }

    if(low[u] == DFN[u]){
        ++ scc_cnt;
        for(;;){
            int x = s.top();
            s.pop();
            cmp[x] = scc_cnt;
            if(x == u) break;
        }
    }
}

void scc(){
    dfs_clock = scc_cnt = 0;
    MEM(DFN, 0);
    MEM(cmp, 0);

    int i;
    _FOR_I_(1, n, 1)
    {
        if(!DFN[i]) tarjan(i);
    }
}

int main()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; i ++)
        scanf("%d", &val[i]);
    int m;
    scanf("%d", &m);

    while(m --)
    {
        int f, t;
        scanf("%d%d", &f, &t);
        v[f].push_back(t);
    }

    // tarjan method to find strongly connected components
    scc();

    int i;
    _FOR_I_(1, scc_cnt, 1)
        res[i].m = INF;

    // find minimum money for each strongly connected components
    _FOR_I_(1, n, 1){
        if(res[ cmp[i] ].m == val[i]) ++res[ cmp[i] ].num;
        if(res[ cmp[i] ].m > val[i]){
            res[ cmp[i] ].m = val[i];
            res[ cmp[i] ].num = 1;
        }
    }

    // count the value
    INT64 sum_val = 0, sum = 1;
    _FOR_I_(1, scc_cnt, 1){
        sum_val += res[i].m;
        sum = sum * res[i].num % MODNUM;
    }

    printf("%I64d %I64d\n", sum_val, sum);

    return 0;
}


你可能感兴趣的:(最强连通分支)