版本:
Spoon:5.0.1 stable
CDH:5.0.0
Hadoop:2.3.0(CDH自带Hadoop)。
一、调用Hadoop Job Executor前准备:
1.下载shim包(可以到官网下载:http://wiki.pentaho.com/display/BAD/Configuring+Pentaho+for+your+Hadoop+Distro+and+Version,或者下载这个:http://download.csdn.net/detail/fansy1990/7298911、http://download.csdn.net/detail/fansy1990/7299163,这两个文件为分卷压缩文件),下载后解压缩到:Spoon_home/data-integration\plugins\pentaho-big-data-plugin\hadoop-configurations目录。(不要修改解压后文件夹名)
2. 修改Spoon_home/data-integration\plugins\pentaho-big-data-plugin\hadoop-configurations\cdh50beta\*.xml 所有xml文件,把部署好的cloudera集群的配置文件拷贝替换即可。(注意如果是linux系统,目录斜线方向)
3. 修改Spoon_home\data-integration\plugins\pentaho-big-data-plugin\plugin.properties :(其值对应前面解压的文件夹名)
# here see the config.properties file in that configuration's directory. active.hadoop.configuration=cdh50beta
1. 在linux中运行 ./spoon.sh 打开Spoon,新建下面的任务:
2. 编写java文件,如下:
package fz.org; import java.io.*; import java.util.*; import org.apache.hadoop.fs.Path; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.conf.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*; @SuppressWarnings("deprecation") public class WordCount2 extends Configured implements Tool { public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { static enum Counters { INPUT_WORDS } private final static IntWritable one = new IntWritable(1); private Text word = new Text(); private boolean caseSensitive = true; private Set<String> patternsToSkip = new HashSet<String>(); private long numRecords = 0; private String inputFile; public void configure(JobConf job) { caseSensitive = job.getBoolean("wordcount.case.sensitive", true); inputFile = job.get("map.input.file"); if (job.getBoolean("wordcount.skip.patterns", false)) { Path[] patternsFiles = new Path[0]; try { patternsFiles = DistributedCache.getLocalCacheFiles(job); } catch (IOException ioe) { System.err.println("Caught exception while getting cached files: " + StringUtils.stringifyException(ioe)); } for (Path patternsFile : patternsFiles) { parseSkipFile(patternsFile); } } } private void parseSkipFile(Path patternsFile) { try { BufferedReader fis = new BufferedReader(new FileReader(patternsFile.toString())); String pattern = null; while ((pattern = fis.readLine()) != null) { patternsToSkip.add(pattern); } } catch (IOException ioe) { System.err.println("Caught exception while parsing the cached file '" + patternsFile + "' : " + StringUtils.stringifyException(ioe)); } } public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = (caseSensitive) ? value.toString() : value.toString().toLowerCase(); for (String pattern : patternsToSkip) { line = line.replaceAll(pattern, ""); } StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); reporter.incrCounter(Counters.INPUT_WORDS, 1); } if ((++numRecords % 100) == 0) { reporter.setStatus("Finished processing " + numRecords + " records " + "from the input file: " + inputFile); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } public int run(String[] args) throws Exception { JobConf conf = new JobConf(getConf(), WordCount2.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); /* List<String> other_args = new ArrayList<String>(); for (int i=0; i < args.length; ++i) { if ("-skip".equals(args[i])) { DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf); conf.setBoolean("wordcount.skip.patterns", true); } else { other_args.add(args[i]); } }*/ FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); return 0; } public static void main(String[] args) throws Exception { /*String [] arg= new String[]{ "hdfs://node33:8020/input/install.log", "hdfs://node33:8020/output/wc002" };*/ if(args.length!=4){ System.err.println("Usage: <input> <output> <hdfs://host:port> <host:port>"); System.exit(-1); } Configuration conf= new Configuration(); conf.set("fs.defaultFS", args[2]); conf.set("mapreduce.framework.name", "yarn"); conf.set("yarn.resourcemanager.address", args[3]); conf.set("mapred.remote.os", "Linux"); // conf.set("mapred.job.tracker","node33:8021"); int res = ToolRunner.run(conf, new WordCount2(), args); System.exit(res); } }
4. 配置 Hadoop Job Executor。
这里需要注意的是,在编写java文件的时候需要指定resource manager(使用的是yarn方式),所以下面的配置需要特别注意:
Configuration conf= new Configuration(); conf.set("fs.defaultFS", args[2]); conf.set("mapreduce.framework.name", "yarn"); conf.set("yarn.resourcemanager.address", args[3]);
三、windows 运行kettle。
如果按照上面的配置,而kettle是在windows上面运行的话,那么就会出现下面的错误:
2014/05/05 18:53:51 - Hadoop Job Executor - Caused by: java.io.IOException: Cannot run program "chmod": CreateProcess error=2, ϵͳÕҲ»µ½ָ¶
分享,成长,快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990