POJ 3277 City Horizon
1
/**/
/*
2
POJ 3277 City Horizon
3![]()
4![]()
5
----问题描述:
6![]()
7
Farmer John has taken his cows on a trip to the city!
8
As the sun sets, the cows gaze at the city horizon and observe the beautiful silhouettes formed by the rectangular buildings.
9
The entire horizon is represented by a number line with N (1 ≤ N ≤ 40,000) buildings.
10
Building i's silhouette has a base that spans locations Ai through Bi
11
along the horizon (1 ≤ Ai < Bi ≤ 1,000,000,000)
12
and has height Hi (1 ≤ Hi ≤ 1,000,000,000).
13
Determine the area, in square units, of the aggregate silhouette formed by all N buildings.
14![]()
15![]()
16
----输入:
17![]()
18
Line 1: A single integer: N
19
Lines 2..N+1: Input line i+1 describes building i with three space-separated integers: Ai, Bi, and Hi
20![]()
21![]()
22
----输出:
23![]()
24
Line 1: The total area, in square units, of the silhouettes formed by all N buildings
25![]()
26![]()
27
----样例输入:
28![]()
29
4
30
2 5 1
31
9 10 4
32
6 8 2
33
4 6 3
34![]()
35![]()
36
----样例输出:
37![]()
38
16
39![]()
40![]()
41
----分析:
42![]()
43
线段树+离散化。
44![]()
45![]()
46
*/
47![]()
48![]()
49![]()
/**/
/******************************************************
50
AC 766MS
51
*/
52![]()
53
#include
<
iostream
>
54
#include
<
algorithm
>
55![]()
56
using
namespace
std;
57![]()
58
typedef
long
long
Lint;
59![]()
60![]()
61
template
<
class
T, unsigned
int
N
>
62
class
CSegTree
63![]()
{
64
public :
65![]()
void init( int loc[], int b, int e )
{
66
this->loc = loc;
67
init( 1, b, e );
68
}
69![]()
void modify( int b, int e, int h )
{
70
begin = b;
71
end = e;
72
hei = h;
73
modify( 1 );
74
}
75![]()
T query( void )
{
76
return query( 1 );
77
}
78![]()
79
private :
80![]()
void init( int node, int b, int e )
{
81
left[ node ] = b;
82
right[ node ] = e;
83
height[ node ] = 0;
84![]()
if( b + 1 < e )
{
85
init( node << 1, b, ( b + e ) >> 1 );
86
init( ( node << 1 ) + 1, ( b + e ) >> 1, e );
87
}
88
}
89![]()
void modify( int node )
{
90![]()
if( ( end <= left[ node ] ) || ( right[ node ] <= begin ) )
{
91
return;
92
}
93![]()
if( ( begin <= left[ node ] ) && ( right[ node ] <= end ) )
{
94
height[ node ] = max( height[node], hei );
95
return;
96
}
97![]()
if ( left[ node ] + 1 >= right[ node ] )
{
98
return;
99
}
100![]()
101
height[ node << 1 ] = max( height[ node << 1 ], height[ node ] );
102
height[ ( node << 1 ) + 1 ] = max( height[ ( node << 1 ) + 1 ], height[ node ] );
103
height[ node ] = 0;
104![]()
105
modify( node << 1 );
106
modify( ( node << 1 ) + 1 );
107
}
108![]()
T query( int node )
{
109![]()
if( height[ node ] )
{
110
return ((T)(height[node])) * (((T)(loc[right[node]])) - loc[left[node]]);
111
}
112![]()
if( left[ node ] + 1 >= right[ node ] )
{
113
return 0;
114
}
115
return query( node << 1 ) + query( ( node << 1 ) + 1 );
116
}
117![]()
118
typedef int IA[ N * 4 ];
119
IA left, right, height;
120
int *loc;
121![]()
122
int begin, end, hei;
123
}
;
124![]()
125
template
<
class
T, unsigned
int
N, unsigned
int
NT
>
126
class
CLine
127![]()
{
128
public :
129![]()
friend istream & operator>>( istream & is, CLine<T, N, NT> & li )
{
130
is >> li.n;
131![]()
for( int i = 1; i <= li.n; ++i )
{
132
is >> li.left[ i ] >> li.right[ i ] >> li.height[ i ];
133
}
134
return is;
135
}
136![]()
void init_tree( CSegTree<T, NT> & tree )
{
137
int i, j;
138
n2 = n << 1;
139![]()
for( j = i = 1; i <= n; ++i,++j )
{
140
line[ j ].p = left[ i ];
141
line[ j ].id = i;
142
line[ j ].bLeft = 1;
143![]()
144
++j;
145
line[ j ].p = right[ i ];
146
line[ j ].id = i;
147
line[ j ].bLeft = 0;
148
}
149
sort( line + 1, line + n2 + 1 );
150
tp = 0;
151
line[ 0 ].p = -123456;
152![]()
for( i = 1; i <= n2; ++i )
{
153![]()
if( line[ i ].bLeft )
{
154
left[ line[ i ].id ] = ( line[ i - 1 ].p == line[ i ].p ? tp : ++tp );
155
}
156![]()
else
{
157
right[ line[ i ].id ] = ( line[ i - 1 ].p == line[ i ].p ? tp : ++tp );
158
}
159
loc[ tp ] = line[ i ].p;
160
}
161![]()
162![]()
for ( i = 1; i <= n; ++i )
{
163
line[ i ].p = height[ i ];
164
line[ i ].id = left[ i ];
165
line[ i ].bLeft = right[ i ];
166
}
167
sort( line+1, line+n+1 );
168![]()
for ( i = 1; i <= n; ++i )
{
169
height[ i ] = line[ i ].p;
170
left[ i ] = line[ i ].id;
171
right[ i ] = line[ i ].bLeft;
172
}
173![]()
174
tree.init( loc, 1, tp );
175![]()
for( i = 1; i <= n; ++i )
{
176
tree.modify( left[ i ], right[ i ], height[ i ] );
177
}
178
}
179![]()
180
private :
181
struct SLine
182![]()
{
183![]()
bool operator<( const SLine & b )
{
184
return p < b.p;
185
}
186
int p, id, bLeft;
187
};
188
SLine line[ N * 2 ];
189
int left[ N ], right[ N ], height[ N ], loc[ N * 2 ], n, n2, tp;
190
}
;
191![]()
192
const
int
L
=
40009
, TL
=
L
*
2
;
193
CSegTree
<
Lint, TL
>
tree;
194
CLine
<
Lint, L, TL
>
line;
195![]()
196![]()
int
main()
{
197
cin >> line;
198
line.init_tree( tree );
199
cout << tree.query() << endl;
200
return 0;
201
}
202
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65

66
67
68
69

70
71
72
73
74
75

76
77
78
79
80

81
82
83
84

85
86
87
88
89

90

91
92
93

94
95
96
97

98
99
100
101
102
103
104
105
106
107
108

109

110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129

130
131

132
133
134
135
136

137
138
139

140
141
142
143
144
145
146
147
148
149
150
151
152

153

154
155
156

157
158
159
160
161
162

163
164
165
166
167
168

169
170
171
172
173
174
175

176
177
178
179
180
181
182

183

184
185
186
187
188
189
190
191
192
193
194
195
196

197
198
199
200
201
202