sys_init_module & sys_delete_module 简要分析

AUTHOR: Joseph Yang (杨红刚) <[email protected]>
CONTENT: sys_init_module & sys_delete_module 简要分析
NOTE: linux-3.0
LAST MODIFIED:09-26-2011
-----------------------------------------------------------------------------------------------------------
Distributed and Embedded System Lab (分布式嵌入式系统实验室,兰州大学)
===============================================================



ref:ELF  http://en.wikipedia.org/wiki/Executable_and_Linkable_Format   
         内核模块的构建过程: http://blog.csdn.net/unbutun/article/details/6445983
        -   readelf -S module_name.ko //读ELF文件的各个段的信息
         - ELF文件格式
         模块加载过程:http://www.linuxforum.net/forum/showflat.php?Cat=&Board=security&Number=529127&page=0&view=collapsed&sb=5&o=31&fpart=
-------------------------------------------------------------------------------------------------
 1.  SYSCALL_DEFINE3的解释
      ref:  include/linux/syscalls.h & arch/x86/include/asm/linkage.h

      #define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name, __VA_ARGS__)
      
        #ifdef CONFIG_FTRACE_SYSCALLS //我们不分析这一部分
         //...
        #else
        #define SYSCALL_DEFINEx(x, sname, ...)              \
            __SYSCALL_DEFINEx(x, sname, __VA_ARGS__)
        #endif
        
        #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
         //...
        #else /* CONFIG_HAVE_SYSCALL_WRAPPERS */
        #define SYSCALL_DEFINE(name) asmlinkage long sys_##name
        #define __SYSCALL_DEFINEx(x, name, ...)                 \
            asmlinkage long sys##name(__SC_DECL##x(__VA_ARGS__))
        #endif /* CONFIG_HAVE_SYSCALL_WRAPPERS */
   
        #define __SC_DECL1(t1, a1)  t1 a1
        #define __SC_DECL2(t2, a2, ...) t2 a2, __SC_DECL1(__VA_ARGS__)
        #define __SC_DECL3(t3, a3, ...) t3 a3, __SC_DECL2(__VA_ARGS__)
        
        // arch/x86/include/asm/linkage.h
        #define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))
        // __attribute__是关键字,是gcc的C语言扩展,regparm(0)表示不从寄存器传递参数     
 ------------------------------------------------------------------------------------------------------------------------      
 2.
 /* <1>   sys_init_module */
 /* This is where the real work happens */
 SYSCALL_DEFINE3(init_module, void __user *, umod,
         unsigned long, len, const char __user *, uargs);

SYSCALL_DEFINEx(3, _init_module, __VA_ARGS__)

//__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)
__SYSCALL_DEFINEx(3, _init_module, __VA_ARGS__)
apply_relocate
//asmlinkage long sys##name(__SC_DECL##x(__VA_ARGS__))
asmlinkage long sys_init_module(__SC_DECL3(__VA_ARGS__))

//#define __SC_DECL3(t3, a3, ...) t3 a3, __SC_DECL2(__VA_ARGS__)
asmlinkage long sys_init_module(void __user *  umod, __SC_DECL2(__VA_ARGS__))

//#define __SC_DECL2(t2, a2, ...) t2 a2, __SC_DECL1(__VA_ARGS__)
asmlinkage long sys_init_module(void __user *  umod,  unsigned long len,  __SC_DECL1(__VA_ARGS__))

//#define __SC_DECL1(t1, a1)  t1 a1
asmlinkage long sys_init_module(void __user *  umod,  unsigned long len, const char __user * uargs)

通过上面的步骤,可以得到函数原型:

asmlinkage long sys_init_module(void __user *  umod,  unsigned long len,
                                              const char __user * uargs);
参数:                                            
                umod - 模块的名字
                len -
                uargs -
功能:
流程:      
               确保有插入和删除模块不受限制的权利,并且模块没有被禁止插入或删除??
                                             //capable,modules_disabled
               分配,加载模块,并创建相关的sysfs文件 //load_module
               通知内核通知链module_notify_list上的监听者,模块状态变为MODULE_STATE_COMING
                                                                                                           //blocking_notifier_call_chain
               对于core和init设置相关的region设置 RO和 NX属性 // set_section_ro_nx
               调用本模块的所有构造器 //do_mod_ctors
               调用模块的init方法 //do_one_initcall
               mod->state = MODULE_STATE_LIVE
               唤醒module_wq 队列上等待本模块初始化的所有 任务
               通知内核通知链module_notify_list上的监听者,模块状态变为MODULE_STATE_LIVE
                                                                                                           //blocking_notifier_call_chain
               等待所有的异步函数调用完成 //async_synchronize_full      
               获得module_mutex 锁// module_mutex作用之一就是保护全局的模块链表
               //trim_init_extable       
               对init相关的region 取消 RO和NX属性的设置 //unset_module_init_ro_nx
               释放与模块初始化相关的节区所占的内存 (mod->module_init )//module_free                                                                           
2.1
函数:
/* Allocate and load the module: note that size of section 0 is always
   zero, and we rely on this for optional sections. */
static struct module *load_module(void __user *umod,
                  unsigned long len,
                  const char __user *uargs);
参数:
              umod -
              len -
              uargs -
功能:分配,加载模块,并创建相关的sysfs文件
流程:                   
              对模块进行有效性检查,为模块分配内核空间,并复制内核到该空间,
                              并设置info->hdr和info->len                                                 //copy_and_check
             布置模块,并分配相关的内存,把相关节区复制到最终镜像中 //layout_and_allocate
              Init the unload section of the module.  //module_unload_init
              寻找可选节区,并设置 mod 中跟相关节区相关的项//find optional sections
              //check_module_license_and_versions
              Set up MODINFO_ATTR fields //setup_modinfo
              Fix up syms, so that st_value is a pointer to location. //simplify_symbols             
              对info代表的模块做重定位操作 //apply_relocations, post_relocation
              -------- //以下没有详细看源码,仅仅参考了源码中部分注释
              Flush the instruction cache // flush_module_icache
              把可选参数从用户空间复制到内核空间 //strndup_user
              把模块的状态标记为MODULE_STATE_COMING
              获得module_mutex 锁// module_mutex作用之一就是保护全局的模块链表
              确定没有已经加载的同名模块//find_module
              //dynamic_debug_setup
              确定没有重复的导出符号//verify_export_symbols
              //module_bug_finalize
              把本模块添加到全局模块链表中//list_add_rcu
              释放module_mutex锁 //mutex_unlock
              //parse_args
             在sysfs中创建与本模块相关的文件支持 //mod_sysfs_setup
             释放临时模块镜像和其他临时辅助内存区//kfree, free_copy
             //trace_module_load
2.2
函数:
/* Sets info->hdr and info->len. */
static int copy_and_check(struct load_info *info,
              const void __user *umod, unsigned long len,
              const char __user *uargs);
参数:
             info -
             umod -                
             len -
             uargs -
功能:对模块进行有效性检查,为模块分配内核空间,并复制内核到该空间,
               并设置info->hdr和info->len
流程:
               如果模块的大小没有超过64M,则为模块分配 len大小的空间 //vmalloc
               将整个模块ELF文件拷贝到内核空间 //copy_from_user
               检查目标文件是否是 ELF 目标文件,是否是ELF文件的类型是可重定位文件,
                               体系结构,节区头部表格的表项大小是否正常//memcmp,elf_check_arch
                                                       
               检查所有 节区头部表项和文件头部所占空间不超过 len.
               info->hdr = hdr;
               info->len = len;
2.3
函数: static struct module *layout_and_allocate(struct load_info *info)
参数:
功能: 布置模块,并分配相关的内存,把相关节区复制到最终镜像中
              //Figure out module layout, and allocate all the memory.
流程:
            Set up our basic convenience variables and do some basic section verification   //setup_load_info
            检查modinfo相关的参数 //check_modinfo  
            对于x86构架此函数直接返回0//module_frob_arch_sections
            如果“.data..percpu“节区的大小不为零,
                                   则为之分配per cpu 域//percpu_modalloc
                                   并清除该段sh_flags中的SHF_ALLOC标志//                                                            ????为什么这么做
          
           更新mod中和core和init有关的size的值,并更新每个节区的sh_entsize//layout_sections                         
          为symbol section 以及跟它相关的string table布置位置,更新相关size//layout_symtab
           
          为mod指向的临时镜像中标记了SHF_ALLOC段分配内存,
                      并从临时镜像复制到最终的位置                  //move_module
           
           mod更新为最终模块的第一个节区的首地址
           
2.4
函数:
/*
 * Set up our basic convenience variables (pointers to section headers,
 * search for module section index etc), and do some basic section
 * verification.
 * Return the temporary module pointer (we'll replace it with the final
 * one when we move the module sections around).
 */
static struct module *setup_load_info(struct load_info *info);
参数:
功能:Set up our basic convenience variables and do some basic section verification.
流程:
              info->sechdrs指向节区头部,info->secstrings指向节区名称字符串
              用在临时内存中的实际地址更新每个节区的sh_addr,
              设置sh_flags标志使某些节区不在最终的内存镜像中出现。//rewrite_section_headers
              
              查找符号表所在节区,
                                把它的索引存入info->index.sym
                                把它的节区头部表索引链的索引存入info->index.str
                                把它的名字字符串索引存入info->strtab
                              
             找到 “.gnu.linkonce.this_module“ 节区 //find_sec
                           把它的索引保存到info->index.mod
                           让mod指向该节区的首地址                                                                                               //???????
                           
               找到.data..percpu节区//find_pcpusec
                           把它的索引保存到info->index.pcpu中
                           
              模块相关的检查工作//check_modstruct_version
              返回临时的模块的指针
          
2.5 *
函数:static int rewrite_section_headers(struct load_info *info)
参数:info - 描述了加载到内存中的模块的实际参数
功能:用在临时内存中的实际地址更新每个节区的sh_addr,
              设置sh_flags标志使某些节区不在最终的内存镜像中出现。
流程:
             第0个节区的sh_addr置零
             对除第0个节区外的所有节区执行如下操作:
                       检查确保所有非SHT_NOBITS类型节区没有被截断
                       把节区的sh_addr写为镜像在临时内存的实际地址
                       如果内核配置为不可卸载模块(CONFIG_MODULE_UNLOAD)
                                 则,清除所有名称以'.exit'开始的节区的sh_flags中的SHF_ALLOC位,
                                           表示该节区不加载到模块的内存镜像中
           把版本节和info节不加载到最终的内核镜像中 //find_sec
2.6 *
函数:
/* Find a module section: 0 means not found. */
static unsigned int find_sec(const struct load_info *info, const char *name);
参数:
功能:返回info代表的镜像中名字为 name的节区的索引
流程:

2.7
函数:
static inline int check_modstruct_version(Elf_Shdr *sechdrs,
                      unsigned int versindex,
                      struct module *mod);
参数:
              sechdrs - 指向ELF 文件头
              versindex - 版本信息所在的节区的索引
              mod - 指向.gnu.linkonce.this_module节区的首地址                                                                    ???
功能:总之,该函数做了模块相关的检查工作。
流程:     
              找到以“module_layout“开头的节区  //find_symbol
              版本相关的信息的检查 //check_version
2.8
函数:
/* Find a symbol and return it, along with, (optional) crc and
 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
const struct kernel_symbol *find_symbol(const char *name,
                    struct module **owner,
                    const unsigned long **crc,
                    bool gplok,
                    bool warn);
参数:
功能:
         Find a symbol and return it, along with, (optional) crc and  (optional) module which owns it.
流程:  
2.9
函数:static int check_modinfo(struct module *mod, struct load_info *info)
参数:
功能:检查modinfo相关的参数
流程:
               返回模块信息所在节区中与“vermagic” 相关的字符串的地址 //get_modinfo
                                         //至于tag “vermagic”对应的内容,你可以使用modinfo your_module 查看
              检查模块的vermagic相关的内容是合理的  //same_magic
              返回模块信息所在节区中与“staging” 相关的字符串的地址//get_modinfo
                         如果模块是来自staging文件夹下,
                                        则是不成熟的模块,标记模块为(污染的)TAINT_CRAP
                                                                                   给出警告
               
              gpl license相关的检查和设置 //get_modinfo,set_license    
               
              
2.10
函数:static char *get_modinfo(struct load_info *info, const char *tag)
参数:
功能:返回模块信息所在节区中与tag 相关的字符串的地址
流程:
               得到模块相关的信息所在的节区的指针
               从中找到与tag 相关的字符串的地址

2.11
函数:static void set_license(struct module *mod, const char *license)
参数:
功能:gpl license相关的检查和设置
流程:
                license必须是 "GPL","GPL v2","GPL and additional rights", "Dual BSD/GPL"
                              "Dual MIT/GPL", "Dual MPL/GPL"之一
                否则,认为模块的license和gpl不兼容。
                并把模块标记为TAINT_PROPRIETARY_MODULE
                                     //license_is_gpl_compatible ,add_taint_module
2.12
函数:
static int percpu_modalloc(struct module *mod,
               unsigned long size, unsigned long align)
参数:
功能:分配per cpu 域
流程:
                分配per cpu 域 //__alloc_reserved_percpu

2.13
函数:
/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
   might -- code, read-only data, read-write data, small data.  Tally
   sizes, and place the offsets into sh_entsize fields: high bit means it
   belongs in init. */
static void layout_sections(struct module *mod, struct load_info *info);
参数:
功能:// Determine total sizes, and put offsets in sh_entsize.
             //更新mod中和core和init有关的size的值,并更新每个节区的sh_entsize
             更新mod的 mod->core_text_size
                                     mod->core_size
                                     mod->init_text_size
                                     mod->init_ro_size //
                                     mod->init_size //所有AX,A,AW,且以“.init"开头的节区大小之和
                           每个节区的sh_entsize(最高位为1表示属于“init”)
注意:
         -      ARCH_SHF_SMALL 在x86上为 0
         -      $ readelf -S name_of_your_module
             Key to Flags:
              W (write), A (alloc), X (execute), M (merge), S (strings)
              I (info), L (link order), G (group), x (unknown)
              O (extra OS processing required) o (OS specific), p (processor specific)
流程:
               所有节区的sh_entsize字段写为全1
                 
  遍历所有节区:
               对于AX(SHF_EXECINSTR | SHF_ALLOC)类型的节区,A(SHF_ALLOC)类型的节区,
                   AW (SHF_WRITE | SHF_ALLOC)类型的节区,并且名字不是以".init"开头的节区:
                          把节区对齐后的大小累加到模块的core_size上,  //get_offset
                                  把由于对齐产生的偏移保存到节区的sh_entsize字段  
                     
             将AX类型节区的大小保存到mod->core_text_size中 ,
             将A(SHF_ALLOC)类型的节区(text and ro-data) 的大小与AX类型节区的大小之和
                                                                                                                 保存到 mod->core_ro_size
             mod->core_size中保存有所有AX,A,AW,且不是以“.init"开头的所有节区大小之和
  遍历所有节区:          
         对于AX(SHF_EXECINSTR | SHF_ALLOC)类型的节区,A(SHF_ALLOC)类型的节区,
                   AW (SHF_WRITE | SHF_ALLOC)类型的节区,并且名字是以".init"开头的节区:
                把由于对齐产生的偏移保存到节区的sh_entsize字段 ,并把最高位值1,表示属于“init”
                
             将AX类型节区的大小保存到mod->init_text_size中 ,
             将A(SHF_ALLOC)类型的节区(text and ro-data) 的大小与AX类型节区的大小之和
                                                                                                                 保存到mod->init_ro_size
             mod->init_size中保存有所有AX,A,AW,且以“.init"开头的节区大小之和
               
               
 2.14  s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
 函数:
 /* Update size with this section: return offset. */
static long get_offset(struct module *mod, unsigned int *size,
               Elf_Shdr *sechdr, unsigned int section)
 参数:
 功能:把sechdr指向的节区对齐后的大小加到size上,并返回由于对齐产生的偏移
 流程:           
          //#define ALIGN(x, a)       (((x) +  ((typeof(x))(a) - 1)) & ~ ((typeof(x))(a) - 1))       
          
2.15
函数:static void layout_symtab(struct module *mod, struct load_info *info)
参数:
功能:为symbol section 以及跟它相关的string table布置位置,更新相关size                            ????
流程:   
               /* Put symbol section at end of init part of module. */
             为sym节区设置 SHF_ALLOC标志//sh_flags
             把sym节区对齐后的大小加到mod->init_size,并返回对齐产生的偏移,//get_offset  ---------- size
                                 将偏移保存到sym节区的sh_entsize,并把最高位置1表示属于init
              
              对于符号表的每个符号表项, 执行如下动作:
                        如果该符号表项属于 core   symbol,则
                                   把字符串映射到info->strmap中//如果字符非空,则置1,否则为0
                                                                   //注意:符号表中的属于core symbol的字符串按照在
                                                                   //sym 节区中的顺序连续地映射到strmap中
                                                                   
            /* Append room for core symbols at end of core part. */
             mod->core_size更新为加上sym 节区后并对齐的值
           /* Put string table section at end of init part of module. */
            为sym节区关联的string table 节区设置SHF_ALLOC//sh_flags         
           把string table节区对齐后的大小加到mod->init_size,并返回对齐产生的偏移,//get_offset  ---------- size
                                 将偏移保存到string table节区的sh_entsize,并把最高位置1表示属于init    
             
           /* Append room for core symbols' strings at end of core part. */
             更新 mod->core_size,增加存储symbols' strings 中属于core symbol的字符串的大小的值    
             
                 
2.16
函数:
static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
                           unsigned int shnum)
参数:
功能:如果src 属于sechdrs代表的模块的core symbol,则返回true,否则,返回false
注意:INIT_OFFSET_MASK:最高位为1表示属于init
 
 2.17
 函数:static int move_module(struct module *mod, struct load_info *info)
 参数:
 功能:为mod指向的临时镜像中标记了SHF_ALLOC段分配内存,
                      并从临时镜像复制到最终的位置
 流程:       
           allocate virtually contiguous memory (mod->core_size)   //module_alloc_update_bounds         
            mark an allocated object as false positive //kmemleak_not_leak
            把分配的内存块清零 //memset
            allocate virtually contiguous memory (mod->init_size)   //module_alloc_update_bounds
            ignore an allocated object //kmemleak_ignore
            把分配的内存块清零 //memset
            Transfer each section which specifies SHF_ALLOC // memcpy
2.18
函数:static void *module_alloc_update_bounds(unsigned long size)
参数:
功能: allocate virtually contiguous memory
流程:   
                allocate virtually contiguous memory // module_alloc  

2.19
函数:static int apply_relocations(struct module *mod, const struct load_info *info)
参数:
功能:对info代表的模块做重定位操作
流程:      
              对于模块中所有SHT_REL类型节区:
                         //apply_relocate
               对于模块中所有SHT_RELA类型节区:
                         //apply_relocate_add
                         
3.
函数:
SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
        unsigned int, flags)         
        即,
asmlinkage long sys_delete_module(const char __user *  name_user,  unsigned int  flags);     
参数:
功能:
流程:
               确保有插入和删除模块不受限制的权利,并且模块没有被禁止插入或删除
                                             //capable,modules_disabled
               获得从用户空间传递到内核空间的模块名字  //strncpy_from_user
               获得module_mutex锁 //mutex_lock_interruptible
               得到要卸载的模块的指针 //  find_module
               检查,确认没有其他模块依赖要卸载的模块 // list_empty
               检查模块的状态是否是 MODULE_STATE_LIVE
               设置等待本模块退出 的进程为 current   //mod->waiter = current
               /* Stop the machine so refcounts can't move and disable module. */               //try_stop_module      
               等待模块的引用计数变为0 //wait_for_zero_refcount
               释放module_mutex锁  //mutex_unlock
               调用模块本身的exit函数 //mod->exit()
               告诉通知链module_notify_list上的监听者,模块状态 变为 MODULE_STATE_GOING
                                                                                                                              //blocking_notifier_call_chain
               等待所有的异步函数调用完成//async_synchronize_full
               /* Store the name of the last unloaded module for diagnostic purposes */ //strlcpy
               //free_module
3.1
函数:
/* Free a module, remove from lists, etc. */
static void free_module(struct module *mod)
参数:
功能:
流程:
          删除相关的 sysfs中的文件  // mod_sysfs_teardown      
          /* Remove dynamic debug info */ // ddebug_remove_module
          /* Arch-specific cleanup. */ // module_arch_cleanup
         /* Module unload stuff */
          /* Free any allocated parameters. */
         对init相关的region 取消 RO和NX属性的设置 //unset_module_init_ro_nx
         释放与模块初始化相关的节区所占的内存 (mod->module_init )//module_free  
         kfree(mod->args)
         释放相关的percpu 变量 //percpu_modfree
         /* Free lock-classes: */
          /* Finally, free the core (containing the module structure) */
                     对core相关的region 取消 RO和NX属性的设置// unset_module_core_ro_nx(mod);  
                      释放与core相关的节区所占的内存 //module_free(mod, mod->module_core);
         //update_protections
         
         
-------------------- 相关的数据结构 ----------
#define ELFMAG      "\177ELF" //         include/linux/elf.h


/* Section header.  */
typedef struct elf32_shdr {
  Elf32_Word    sh_name; /* Section name, index in string tbl */
  Elf32_Word    sh_type; /* Type of section */
  Elf32_Word    sh_flags; /* Miscellaneous section attributes */
  Elf32_Addr    sh_addr; /* Section virtual addr at execution */
  Elf32_Off sh_offset;  /* Section file offset */
  Elf32_Word    sh_size;  /* Size of section in bytes */
  Elf32_Word    sh_link;  /* Index of another section */
  Elf32_Word    sh_info; /* Additional section information */
  Elf32_Word    sh_addralign; /* Section alignment */
  Elf32_Word    sh_entsize;  /* Entry size if section holds table */ 包存了节区对齐产生的偏移量(layout_sections)
} Elf32_Shdr;
#define Elf_Shdr Elf32_Shdr

// include/linux/elf.h
/* The ELF file header.  This appears at the start of every ELF file.  */
typedef struct elf32_hdr{ //和用户空间的一样
  unsigned char e_ident[EI_NIDENT]; //必须为  "\177ELF"/* Magic number and other info */
  Elf32_Half    e_type; /* Object file type */
  Elf32_Half    e_machine;   /* Architecture */
  Elf32_Word    e_version;/* Object file version */
  Elf32_Addr    e_entry;   /* Entry point virtual address */
  Elf32_Off e_phoff; /* Program header table file offset */
  Elf32_Off e_shoff;  /* Section header table file offset */
  Elf32_Word    e_flags;  /* Processor-specific flags */
  Elf32_Half    e_ehsize;   /* ELF header size in bytes */
  Elf32_Half    e_phentsize;   /* Program header table entry size */
  Elf32_Half    e_phnum; /* Program header table entry count */
  Elf32_Half    e_shentsize;  /* Section header table entry size */
  Elf32_Half    e_shnum; /* Section header table entry count */
  Elf32_Half    e_shstrndx; /* Section header string table index */
} Elf32_Ehdr;
#define Elf_Ehdr Elf32_Ehdr

struct load_info {
    Elf_Ehdr *hdr; // Pointer to  ELF file header
    unsigned long len; //整个ELF文件的大小
    Elf_Shdr *sechdrs; // Pointer to Section header.
    char *secstrings, *strtab; //secstrings: 节区名称字符串,
                                               // strtab:和符号表所关联的字符串表的首地址
    unsigned long *strmap; //和符号表相关联的字符串表节区的bit 映射 //layout_and_allocate(zalloc)
    unsigned long symoffs, stroffs;//symoffs:mod->core_size对齐后的值
    struct _ddebug *debug;
    unsigned int num_debug;
    struct {
        unsigned int sym, str, mod, vers, info, pcpu;  
                           // sym代表符号表节区索引,版本节,模块信息节,在镜像中的索引
                           //str代表和符号表相关联的字符串表的节区的头部索引
              //mod指向.gnu.linkonce.this_module节的索引//该节中有模块的初始化和卸载方法
              //pcpu指向 .data..percpu节区的索引
    } index;
};          

struct module
{
    enum module_state state;

    /* Member of list of modules */
    struct list_head list;

    /* Unique handle for this module */
    char name[MODULE_NAME_LEN];

    /* Sysfs stuff. */
    struct module_kobject mkobj;
    struct module_attribute *modinfo_attrs;
    const char *version;
    const char *srcversion;
    struct kobject *holders_dir;

    /* Exported symbols */
    const struct kernel_symbol *syms;
    const unsigned long *crcs;
    unsigned int num_syms;

    /* Kernel parameters. */
    struct kernel_param *kp;
    unsigned int num_kp;

    /* GPL-only exported symbols. */
    unsigned int num_gpl_syms;
    const struct kernel_symbol *gpl_syms;
    const unsigned long *gpl_crcs;

#ifdef CONFIG_UNUSED_SYMBOLS
    /* unused exported symbols. */
    const struct kernel_symbol *unused_syms;
    const unsigned long *unused_crcs;
    unsigned int num_unused_syms;

    /* GPL-only, unused exported symbols. */
    unsigned int num_unused_gpl_syms;
    const struct kernel_symbol *unused_gpl_syms;
    const unsigned long *unused_gpl_crcs;
#endif

    /* symbols that will be GPL-only in the near future. */
    const struct kernel_symbol *gpl_future_syms;
    const unsigned long *gpl_future_crcs;
    unsigned int num_gpl_future_syms;

    /* Exception table */
    unsigned int num_exentries;
    struct exception_table_entry *extable;

    /* Startup function. */
    int (*init)(void);

    /* If this is non-NULL, vfree after init() returns */
    void *module_init;

    /* Here is the actual code + data, vfree'd on unload. */
    void *module_core; //

    /* Here are the sizes of the init and core sections */
    unsigned int init_size, core_size;

    /* The size of the executable code in each section.  */
    unsigned int init_text_size, core_text_size;

    /* Size of RO sections of the module (text+rodata) */
    unsigned int init_ro_size, core_ro_size;

    /* Arch-specific module values */
    struct mod_arch_specific arch;

    unsigned int taints;    /* same bits as kernel:tainted */

#ifdef CONFIG_GENERIC_BUG
    /* Support for BUG */
    unsigned num_bugs;
    struct list_head bug_list;
    struct bug_entry *bug_table;
#endif

#ifdef CONFIG_KALLSYMS
    /*
     * We keep the symbol and string tables for kallsyms.
     * The core_* fields below are temporary, loader-only (they
     * could really be discarded after module init).
     */
    Elf_Sym *symtab, *core_symtab;
    unsigned int num_symtab, core_num_syms;
    char *strtab, *core_strtab;

    /* Section attributes */
    struct module_sect_attrs *sect_attrs;

    /* Notes attributes */
    struct module_notes_attrs *notes_attrs;
#endif

    /* The command line arguments (may be mangled).  People like
       keeping pointers to this stuff */
    char *args;

#ifdef CONFIG_SMP
    /* Per-cpu data. */
    void __percpu *percpu;                                             // 在percpu_modalloc中分配
    unsigned int percpu_size;                                          //在percpu_modalloc中赋值
#endif

#ifdef CONFIG_TRACEPOINTS
    unsigned int num_tracepoints;
    struct tracepoint * const *tracepoints_ptrs;
#endif
#ifdef HAVE_JUMP_LABEL
    struct jump_entry *jump_entries;
    unsigned int num_jump_entries;
#endif
#ifdef CONFIG_TRACING
    unsigned int num_trace_bprintk_fmt;
    const char **trace_bprintk_fmt_start;
#endif
#ifdef CONFIG_EVENT_TRACING
    struct ftrace_event_call **trace_events;
    unsigned int num_trace_events;
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
    unsigned int num_ftrace_callsites;
    unsigned long *ftrace_callsites;
#endif

#ifdef CONFIG_MODULE_UNLOAD
    /* What modules depend on me? */
    struct list_head source_list;
    /* What modules do I depend on? */
    struct list_head target_list;

    /* Who is waiting for us to be unloaded */
    struct task_struct *waiter;

    /* Destruction function. */
    void (*exit)(void);

    struct module_ref {
        unsigned int incs;
        unsigned int decs;
    } __percpu *refptr;
#endif

#ifdef CONFIG_CONSTRUCTORS
    /* Constructor functions. */
    ctor_fn_t *ctors;
    unsigned int num_ctors;
#endif
};
-   可执行目标文件在 ELF 头部的 e_phentsize 和 e_phnum 成员中给出其自身程序头部
     的大小。
-    可执行文件与共享目标文件之间的段加载之间有一点不同。可执行文件的段通常包
     含绝对代码,为了能够让进程正确执行,所使用的段必须是构造可执行文件时所使用的
     虚拟地址。因此系统会使用 p_vaddr 作为虚拟地址
      

你可能感兴趣的:(struct,Module,header,user,table,delete)