Direct3D Tutorial 5: Using Texture Maps
//
-----------------------------------------------------------------------------
// File: Textures.cpp
//
// Desc: Better than just lights and materials, 3D objects look much more
// convincing when texture-mapped. Textures can be thought of as a sort
// of wallpaper, that is shrinkwrapped to fit a texture. Textures are
// typically loaded from image files, and D3DX provides a utility to
// function to do this for us. Like a vertex buffer, textures have
// Lock() and Unlock() functions to access (read or write) the image
// data. Textures have a width, height, miplevel, and pixel format. The
// miplevel is for "mipmapped" textures, an advanced performance-
// enhancing feature which uses lower resolutions of the texture for
// objects in the distance where detail is less noticeable. The pixel
// format determines how the colors are stored in a texel. The most
// common formats are the 16-bit R5G6B5 format (5 bits of red, 6-bits of
// green and 5 bits of blue) and the 32-bit A8R8G8B8 format (8 bits each
// of alpha, red, green, and blue).
//
// Textures are associated with geometry through texture coordinates.
// Each vertex has one or more sets of texture coordinates, which are
// named tu and tv and range from 0.0 to 1.0. Texture coordinates can be
// supplied by the geometry, or can be automatically generated using
// Direct3D texture coordinate generation (which is an advanced feature).
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// -----------------------------------------------------------------------------
#include < Windows.h >
#include < mmsystem.h >
#include < d3dx9.h >
#pragma warning( disable : 4996 ) // disable deprecated warning
#include < strsafe.h >
#pragma warning( default : 4996 )
// -----------------------------------------------------------------------------
// Global variables
// -----------------------------------------------------------------------------
LPDIRECT3D9 g_pD3D = NULL; // Used to create the D3DDevice
LPDIRECT3DDEVICE9 g_pd3dDevice = NULL; // Our rendering device
LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL; // Buffer to hold vertices
LPDIRECT3DTEXTURE9 g_pTexture = NULL; // Our texture
// A structure for our custom vertex type. We added texture coordinates
struct CUSTOMVERTEX
{
D3DXVECTOR3 position; // The position
D3DCOLOR color; // The color
#ifndef SHOW_HOW_TO_USE_TCI
FLOAT tu, tv; // The texture coordinates
#endif
};
// Our custom FVF, which describes our custom vertex structure
#ifdef SHOW_HOW_TO_USE_TCI
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE)
#else
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1)
#endif
// -----------------------------------------------------------------------------
// Name: InitD3D()
// Desc: Initializes Direct3D
// -----------------------------------------------------------------------------
HRESULT InitD3D( HWND hWnd )
{
// Create the D3D object.
if ( NULL == ( g_pD3D = Direct3DCreate9( D3D_SDK_VERSION ) ) )
return E_FAIL;
// Set up the structure used to create the D3DDevice. Since we are now
// using more complex geometry, we will create a device with a zbuffer.
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory( & d3dpp, sizeof (d3dpp) );
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
// Create the D3DDevice
if ( FAILED( g_pD3D -> CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
& d3dpp, & g_pd3dDevice ) ) )
{
return E_FAIL;
}
// Turn off culling
g_pd3dDevice -> SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );
// Turn off D3D lighting
g_pd3dDevice -> SetRenderState( D3DRS_LIGHTING, FALSE );
// Turn on the zbuffer
g_pd3dDevice -> SetRenderState( D3DRS_ZENABLE, TRUE );
return S_OK;
}
// -----------------------------------------------------------------------------
// Name: InitGeometry()
// Desc: Create the textures and vertex buffers
// -----------------------------------------------------------------------------
HRESULT InitGeometry()
{
// Use D3DX to create a texture from a file based image
// 从文件创建纹理
if ( FAILED( D3DXCreateTextureFromFile( g_pd3dDevice, " banana.bmp " , & g_pTexture ) ) )
{
// If texture is not in current folder, try parent folder
if ( FAILED( D3DXCreateTextureFromFile( g_pd3dDevice, " ..\\banana.bmp " , & g_pTexture ) ) )
{
MessageBox(NULL, " Could not find banana.bmp " , " Textures.exe " , MB_OK);
return E_FAIL;
}
}
// Create the vertex buffer.
if ( FAILED( g_pd3dDevice -> CreateVertexBuffer( 50 * 2 * sizeof (CUSTOMVERTEX),
0 , D3DFVF_CUSTOMVERTEX,
D3DPOOL_DEFAULT, & g_pVB, NULL ) ) )
{
return E_FAIL;
}
// Fill the vertex buffer. We are setting the tu and tv texture
// coordinates, which range from 0.0 to 1.0
CUSTOMVERTEX * pVertices;
if ( FAILED( g_pVB -> Lock( 0 , 0 , ( void ** ) & pVertices, 0 ) ) )
return E_FAIL;
for ( DWORD i = 0 ; i < 50 ; i ++ )
{
FLOAT theta = ( 2 * D3DX_PI * i) / ( 50 - 1 );
pVertices[ 2 * i + 0 ].position = D3DXVECTOR3( sinf(theta), - 1.0f , cosf(theta) );
pVertices[ 2 * i + 0 ].color = 0xffffffff ;
#ifndef SHOW_HOW_TO_USE_TCI
pVertices[ 2 * i + 0 ].tu = ((FLOAT)i) / ( 50 - 1 );
pVertices[ 2 * i + 0 ].tv = 1.0f ;
#endif
pVertices[ 2 * i + 1 ].position = D3DXVECTOR3( sinf(theta), 1.0f , cosf(theta) );
pVertices[ 2 * i + 1 ].color = 0xff808080 ;
#ifndef SHOW_HOW_TO_USE_TCI
pVertices[ 2 * i + 1 ].tu = ((FLOAT)i) / ( 50 - 1 );
pVertices[ 2 * i + 1 ].tv = 0.0f ;
#endif
}
g_pVB -> Unlock();
return S_OK;
}
// -----------------------------------------------------------------------------
// Name: Cleanup()
// Desc: Releases all previously initialized objects
// -----------------------------------------------------------------------------
VOID Cleanup()
{
if ( g_pTexture != NULL )
g_pTexture -> Release();
if ( g_pVB != NULL )
g_pVB -> Release();
if ( g_pd3dDevice != NULL )
g_pd3dDevice -> Release();
if ( g_pD3D != NULL )
g_pD3D -> Release();
}
// -----------------------------------------------------------------------------
// Name: SetupMatrices()
// Desc: Sets up the world, view, and projection transform matrices.
// -----------------------------------------------------------------------------
VOID SetupMatrices()
{
// Set up world matrix
D3DXMATRIXA16 matWorld;
D3DXMatrixIdentity( & matWorld );
D3DXMatrixRotationX( & matWorld, timeGetTime() / 1000.0f );
g_pd3dDevice -> SetTransform( D3DTS_WORLD, & matWorld );
// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the
// origin, and define "up" to be in the y-direction.
D3DXVECTOR3 vEyePt( 0.0f , 3.0f , - 5.0f );
D3DXVECTOR3 vLookatPt( 0.0f , 0.0f , 0.0f );
D3DXVECTOR3 vUpVec( 0.0f , 1.0f , 0.0f );
D3DXMATRIXA16 matView;
D3DXMatrixLookAtLH( & matView, & vEyePt, & vLookatPt, & vUpVec );
g_pd3dDevice -> SetTransform( D3DTS_VIEW, & matView );
// For the projection matrix, we set up a perspective transform (which
// transforms geometry from 3D view space to 2D viewport space, with
// a perspective divide making objects smaller in the distance). To build
// a perpsective transform, we need the field of view (视区)(1/4 pi is common),
// the aspect ratio, and the near and far clipping planes (which define at
// what distances geometry should be no longer be rendered).
D3DXMATRIXA16 matProj;
D3DXMatrixPerspectiveFovLH( & matProj, D3DX_PI / 4 , 1.0f , 1.0f , 100.0f );
g_pd3dDevice -> SetTransform( D3DTS_PROJECTION, & matProj );
}
// File: Textures.cpp
//
// Desc: Better than just lights and materials, 3D objects look much more
// convincing when texture-mapped. Textures can be thought of as a sort
// of wallpaper, that is shrinkwrapped to fit a texture. Textures are
// typically loaded from image files, and D3DX provides a utility to
// function to do this for us. Like a vertex buffer, textures have
// Lock() and Unlock() functions to access (read or write) the image
// data. Textures have a width, height, miplevel, and pixel format. The
// miplevel is for "mipmapped" textures, an advanced performance-
// enhancing feature which uses lower resolutions of the texture for
// objects in the distance where detail is less noticeable. The pixel
// format determines how the colors are stored in a texel. The most
// common formats are the 16-bit R5G6B5 format (5 bits of red, 6-bits of
// green and 5 bits of blue) and the 32-bit A8R8G8B8 format (8 bits each
// of alpha, red, green, and blue).
//
// Textures are associated with geometry through texture coordinates.
// Each vertex has one or more sets of texture coordinates, which are
// named tu and tv and range from 0.0 to 1.0. Texture coordinates can be
// supplied by the geometry, or can be automatically generated using
// Direct3D texture coordinate generation (which is an advanced feature).
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// -----------------------------------------------------------------------------
#include < Windows.h >
#include < mmsystem.h >
#include < d3dx9.h >
#pragma warning( disable : 4996 ) // disable deprecated warning
#include < strsafe.h >
#pragma warning( default : 4996 )
// -----------------------------------------------------------------------------
// Global variables
// -----------------------------------------------------------------------------
LPDIRECT3D9 g_pD3D = NULL; // Used to create the D3DDevice
LPDIRECT3DDEVICE9 g_pd3dDevice = NULL; // Our rendering device
LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL; // Buffer to hold vertices
LPDIRECT3DTEXTURE9 g_pTexture = NULL; // Our texture
// A structure for our custom vertex type. We added texture coordinates
struct CUSTOMVERTEX
{
D3DXVECTOR3 position; // The position
D3DCOLOR color; // The color
#ifndef SHOW_HOW_TO_USE_TCI
FLOAT tu, tv; // The texture coordinates
#endif
};
// Our custom FVF, which describes our custom vertex structure
#ifdef SHOW_HOW_TO_USE_TCI
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE)
#else
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1)
#endif
// -----------------------------------------------------------------------------
// Name: InitD3D()
// Desc: Initializes Direct3D
// -----------------------------------------------------------------------------
HRESULT InitD3D( HWND hWnd )
{
// Create the D3D object.
if ( NULL == ( g_pD3D = Direct3DCreate9( D3D_SDK_VERSION ) ) )
return E_FAIL;
// Set up the structure used to create the D3DDevice. Since we are now
// using more complex geometry, we will create a device with a zbuffer.
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory( & d3dpp, sizeof (d3dpp) );
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
// Create the D3DDevice
if ( FAILED( g_pD3D -> CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
& d3dpp, & g_pd3dDevice ) ) )
{
return E_FAIL;
}
// Turn off culling
g_pd3dDevice -> SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );
// Turn off D3D lighting
g_pd3dDevice -> SetRenderState( D3DRS_LIGHTING, FALSE );
// Turn on the zbuffer
g_pd3dDevice -> SetRenderState( D3DRS_ZENABLE, TRUE );
return S_OK;
}
// -----------------------------------------------------------------------------
// Name: InitGeometry()
// Desc: Create the textures and vertex buffers
// -----------------------------------------------------------------------------
HRESULT InitGeometry()
{
// Use D3DX to create a texture from a file based image
// 从文件创建纹理
if ( FAILED( D3DXCreateTextureFromFile( g_pd3dDevice, " banana.bmp " , & g_pTexture ) ) )
{
// If texture is not in current folder, try parent folder
if ( FAILED( D3DXCreateTextureFromFile( g_pd3dDevice, " ..\\banana.bmp " , & g_pTexture ) ) )
{
MessageBox(NULL, " Could not find banana.bmp " , " Textures.exe " , MB_OK);
return E_FAIL;
}
}
// Create the vertex buffer.
if ( FAILED( g_pd3dDevice -> CreateVertexBuffer( 50 * 2 * sizeof (CUSTOMVERTEX),
0 , D3DFVF_CUSTOMVERTEX,
D3DPOOL_DEFAULT, & g_pVB, NULL ) ) )
{
return E_FAIL;
}
// Fill the vertex buffer. We are setting the tu and tv texture
// coordinates, which range from 0.0 to 1.0
CUSTOMVERTEX * pVertices;
if ( FAILED( g_pVB -> Lock( 0 , 0 , ( void ** ) & pVertices, 0 ) ) )
return E_FAIL;
for ( DWORD i = 0 ; i < 50 ; i ++ )
{
FLOAT theta = ( 2 * D3DX_PI * i) / ( 50 - 1 );
pVertices[ 2 * i + 0 ].position = D3DXVECTOR3( sinf(theta), - 1.0f , cosf(theta) );
pVertices[ 2 * i + 0 ].color = 0xffffffff ;
#ifndef SHOW_HOW_TO_USE_TCI
pVertices[ 2 * i + 0 ].tu = ((FLOAT)i) / ( 50 - 1 );
pVertices[ 2 * i + 0 ].tv = 1.0f ;
#endif
pVertices[ 2 * i + 1 ].position = D3DXVECTOR3( sinf(theta), 1.0f , cosf(theta) );
pVertices[ 2 * i + 1 ].color = 0xff808080 ;
#ifndef SHOW_HOW_TO_USE_TCI
pVertices[ 2 * i + 1 ].tu = ((FLOAT)i) / ( 50 - 1 );
pVertices[ 2 * i + 1 ].tv = 0.0f ;
#endif
}
g_pVB -> Unlock();
return S_OK;
}
// -----------------------------------------------------------------------------
// Name: Cleanup()
// Desc: Releases all previously initialized objects
// -----------------------------------------------------------------------------
VOID Cleanup()
{
if ( g_pTexture != NULL )
g_pTexture -> Release();
if ( g_pVB != NULL )
g_pVB -> Release();
if ( g_pd3dDevice != NULL )
g_pd3dDevice -> Release();
if ( g_pD3D != NULL )
g_pD3D -> Release();
}
// -----------------------------------------------------------------------------
// Name: SetupMatrices()
// Desc: Sets up the world, view, and projection transform matrices.
// -----------------------------------------------------------------------------
VOID SetupMatrices()
{
// Set up world matrix
D3DXMATRIXA16 matWorld;
D3DXMatrixIdentity( & matWorld );
D3DXMatrixRotationX( & matWorld, timeGetTime() / 1000.0f );
g_pd3dDevice -> SetTransform( D3DTS_WORLD, & matWorld );
// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the
// origin, and define "up" to be in the y-direction.
D3DXVECTOR3 vEyePt( 0.0f , 3.0f , - 5.0f );
D3DXVECTOR3 vLookatPt( 0.0f , 0.0f , 0.0f );
D3DXVECTOR3 vUpVec( 0.0f , 1.0f , 0.0f );
D3DXMATRIXA16 matView;
D3DXMatrixLookAtLH( & matView, & vEyePt, & vLookatPt, & vUpVec );
g_pd3dDevice -> SetTransform( D3DTS_VIEW, & matView );
// For the projection matrix, we set up a perspective transform (which
// transforms geometry from 3D view space to 2D viewport space, with
// a perspective divide making objects smaller in the distance). To build
// a perpsective transform, we need the field of view (视区)(1/4 pi is common),
// the aspect ratio, and the near and far clipping planes (which define at
// what distances geometry should be no longer be rendered).
D3DXMATRIXA16 matProj;
D3DXMatrixPerspectiveFovLH( & matProj, D3DX_PI / 4 , 1.0f , 1.0f , 100.0f );
g_pd3dDevice -> SetTransform( D3DTS_PROJECTION, & matProj );
}
//
-----------------------------------------------------------------------------
// Name: Render()
// Desc: Draws the scene
// -----------------------------------------------------------------------------
VOID Render()
{
// Clear the backbuffer and the zbuffer
g_pd3dDevice -> Clear( 0 , NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
D3DCOLOR_XRGB( 0 , 0 , 255 ), 1.0f , 0 );
// Begin the scene
if ( SUCCEEDED( g_pd3dDevice -> BeginScene() ) )
{
// Setup the world, view, and projection matrices
SetupMatrices();
// Setup our texture.
// 配置纹理
// Using textures introduces the texture stage states,
// which govern how textures get blended together (in the case of multiple
// textures) and lighting information. In this case, we are modulating
// (blending) our texture with the diffuse color of the vertices.
g_pd3dDevice -> SetTexture( 0 , g_pTexture );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_COLOROP, D3DTOP_MODULATE );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_COLORARG1, D3DTA_TEXTURE );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_COLORARG2, D3DTA_DIFFUSE );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_ALPHAOP, D3DTOP_DISABLE );
#ifdef SHOW_HOW_TO_USE_TCI
// Note: to use D3D texture coordinate generation, use the stage state
// D3DTSS_TEXCOORDINDEX, as shown below. In this example, we are using
// the position of the vertex in camera space (D3DTSS_TCI_CAMERASPACEPOSITION)
// to generate texture coordinates. Camera space is the vertex position
// multiplied by the World and View matrices. The tex coord index (TCI)
// parameters are passed into a texture transform, which is a 4x4 matrix
// which transforms the x,y,z TCI coordinates into tu, tv texture coordinates.
// In this example, the texture matrix is setup to transform the input
// camera space coordinates (all of R^3) to projection space (-1,+1)
// and finally to texture space (0,1).
// CameraSpace.xyzw = (input vertex position) * (WorldView)
// ProjSpace.xyzw = CameraSpace.xyzw * Projection // move to -1 to 1
// TexSpace.xyzw = ProjSpace.xyzw * ( 0.5, -0.5, 1.0, 1.0 ) // scale to -0.5 to 0.5 (flip y)
// TexSpace.xyzw += ( 0.5, 0.5, 0.0, 0.0 ) // shift to 0 to 1
// Setting D3DTSS_TEXTURETRANSFORMFLAGS to D3DTTFF_COUNT4 | D3DTTFF_PROJECTED
// tells D3D to divide the input texture coordinates by the 4th (w) component.
// This divide is necessary when performing a perspective projection since
// the TexSpace.xy coordinates prior to the homogeneous divide are not actually
// in the 0 to 1 range.
D3DXMATRIXA16 mTextureTransform;
D3DXMATRIXA16 mProj;
D3DXMATRIXA16 mTrans;
D3DXMATRIXA16 mScale;
g_pd3dDevice -> GetTransform( D3DTS_PROJECTION, & mProj );
D3DXMatrixTranslation( & mTrans, 0.5f , 0.5f , 0.0f );
D3DXMatrixScaling( & mScale, 0.5f , - 0.5f , 1.0f );
mTextureTransform = mProj * mScale * mTrans;
g_pd3dDevice -> SetTransform( D3DTS_TEXTURE0, & mTextureTransform );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT4 | D3DTTFF_PROJECTED );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_TEXCOORDINDEX, D3DTSS_TCI_CAMERASPACEPOSITION );
#endif
// Render the vertex buffer contents
g_pd3dDevice -> SetStreamSource( 0 , g_pVB, 0 , sizeof (CUSTOMVERTEX) );
g_pd3dDevice -> SetFVF( D3DFVF_CUSTOMVERTEX );
g_pd3dDevice -> DrawPrimitive( D3DPT_TRIANGLESTRIP, 0 , 2 * 50 - 2 );
// End the scene
g_pd3dDevice -> EndScene();
}
// Present the backbuffer contents to the display
g_pd3dDevice -> Present( NULL, NULL, NULL, NULL );
}
// -----------------------------------------------------------------------------
// Name: MsgProc()
// Desc: The window's message handler
// -----------------------------------------------------------------------------
LRESULT WINAPI MsgProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
{
switch ( msg )
{
case WM_DESTROY:
Cleanup();
PostQuitMessage( 0 );
return 0 ;
}
return DefWindowProc( hWnd, msg, wParam, lParam );
}
// -----------------------------------------------------------------------------
// Name: WinMain()
// Desc: The application's entry point
// -----------------------------------------------------------------------------
INT WINAPI WinMain( HINSTANCE hInst, HINSTANCE, LPSTR, INT )
{
// Register the window class
WNDCLASSEX wc = { sizeof (WNDCLASSEX), CS_CLASSDC, MsgProc, 0L , 0L ,
GetModuleHandle(NULL), NULL, NULL, NULL, NULL,
" D3D Tutorial " , NULL };
RegisterClassEx( & wc );
// Create the application's window
HWND hWnd = CreateWindow( " D3D Tutorial " , " D3D Tutorial 05: Textures " ,
WS_OVERLAPPEDWINDOW, 100 , 100 , 300 , 300 ,
NULL, NULL, wc.hInstance, NULL );
// Initialize Direct3D
if ( SUCCEEDED( InitD3D( hWnd ) ) )
{
// Create the scene geometry
if ( SUCCEEDED( InitGeometry() ) )
{
// Show the window
ShowWindow( hWnd, SW_SHOWDEFAULT );
UpdateWindow( hWnd );
// Enter the message loop
MSG msg;
ZeroMemory( & msg, sizeof (msg) );
while ( msg.message != WM_QUIT )
{
if ( PeekMessage( & msg, NULL, 0U , 0U , PM_REMOVE ) )
{
TranslateMessage( & msg );
DispatchMessage( & msg );
}
else
Render();
}
}
}
UnregisterClass( " D3D Tutorial " , wc.hInstance );
return 0 ;
}
// Name: Render()
// Desc: Draws the scene
// -----------------------------------------------------------------------------
VOID Render()
{
// Clear the backbuffer and the zbuffer
g_pd3dDevice -> Clear( 0 , NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
D3DCOLOR_XRGB( 0 , 0 , 255 ), 1.0f , 0 );
// Begin the scene
if ( SUCCEEDED( g_pd3dDevice -> BeginScene() ) )
{
// Setup the world, view, and projection matrices
SetupMatrices();
// Setup our texture.
// 配置纹理
// Using textures introduces the texture stage states,
// which govern how textures get blended together (in the case of multiple
// textures) and lighting information. In this case, we are modulating
// (blending) our texture with the diffuse color of the vertices.
g_pd3dDevice -> SetTexture( 0 , g_pTexture );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_COLOROP, D3DTOP_MODULATE );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_COLORARG1, D3DTA_TEXTURE );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_COLORARG2, D3DTA_DIFFUSE );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_ALPHAOP, D3DTOP_DISABLE );
#ifdef SHOW_HOW_TO_USE_TCI
// Note: to use D3D texture coordinate generation, use the stage state
// D3DTSS_TEXCOORDINDEX, as shown below. In this example, we are using
// the position of the vertex in camera space (D3DTSS_TCI_CAMERASPACEPOSITION)
// to generate texture coordinates. Camera space is the vertex position
// multiplied by the World and View matrices. The tex coord index (TCI)
// parameters are passed into a texture transform, which is a 4x4 matrix
// which transforms the x,y,z TCI coordinates into tu, tv texture coordinates.
// In this example, the texture matrix is setup to transform the input
// camera space coordinates (all of R^3) to projection space (-1,+1)
// and finally to texture space (0,1).
// CameraSpace.xyzw = (input vertex position) * (WorldView)
// ProjSpace.xyzw = CameraSpace.xyzw * Projection // move to -1 to 1
// TexSpace.xyzw = ProjSpace.xyzw * ( 0.5, -0.5, 1.0, 1.0 ) // scale to -0.5 to 0.5 (flip y)
// TexSpace.xyzw += ( 0.5, 0.5, 0.0, 0.0 ) // shift to 0 to 1
// Setting D3DTSS_TEXTURETRANSFORMFLAGS to D3DTTFF_COUNT4 | D3DTTFF_PROJECTED
// tells D3D to divide the input texture coordinates by the 4th (w) component.
// This divide is necessary when performing a perspective projection since
// the TexSpace.xy coordinates prior to the homogeneous divide are not actually
// in the 0 to 1 range.
D3DXMATRIXA16 mTextureTransform;
D3DXMATRIXA16 mProj;
D3DXMATRIXA16 mTrans;
D3DXMATRIXA16 mScale;
g_pd3dDevice -> GetTransform( D3DTS_PROJECTION, & mProj );
D3DXMatrixTranslation( & mTrans, 0.5f , 0.5f , 0.0f );
D3DXMatrixScaling( & mScale, 0.5f , - 0.5f , 1.0f );
mTextureTransform = mProj * mScale * mTrans;
g_pd3dDevice -> SetTransform( D3DTS_TEXTURE0, & mTextureTransform );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT4 | D3DTTFF_PROJECTED );
g_pd3dDevice -> SetTextureStageState( 0 , D3DTSS_TEXCOORDINDEX, D3DTSS_TCI_CAMERASPACEPOSITION );
#endif
// Render the vertex buffer contents
g_pd3dDevice -> SetStreamSource( 0 , g_pVB, 0 , sizeof (CUSTOMVERTEX) );
g_pd3dDevice -> SetFVF( D3DFVF_CUSTOMVERTEX );
g_pd3dDevice -> DrawPrimitive( D3DPT_TRIANGLESTRIP, 0 , 2 * 50 - 2 );
// End the scene
g_pd3dDevice -> EndScene();
}
// Present the backbuffer contents to the display
g_pd3dDevice -> Present( NULL, NULL, NULL, NULL );
}
// -----------------------------------------------------------------------------
// Name: MsgProc()
// Desc: The window's message handler
// -----------------------------------------------------------------------------
LRESULT WINAPI MsgProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
{
switch ( msg )
{
case WM_DESTROY:
Cleanup();
PostQuitMessage( 0 );
return 0 ;
}
return DefWindowProc( hWnd, msg, wParam, lParam );
}
// -----------------------------------------------------------------------------
// Name: WinMain()
// Desc: The application's entry point
// -----------------------------------------------------------------------------
INT WINAPI WinMain( HINSTANCE hInst, HINSTANCE, LPSTR, INT )
{
// Register the window class
WNDCLASSEX wc = { sizeof (WNDCLASSEX), CS_CLASSDC, MsgProc, 0L , 0L ,
GetModuleHandle(NULL), NULL, NULL, NULL, NULL,
" D3D Tutorial " , NULL };
RegisterClassEx( & wc );
// Create the application's window
HWND hWnd = CreateWindow( " D3D Tutorial " , " D3D Tutorial 05: Textures " ,
WS_OVERLAPPEDWINDOW, 100 , 100 , 300 , 300 ,
NULL, NULL, wc.hInstance, NULL );
// Initialize Direct3D
if ( SUCCEEDED( InitD3D( hWnd ) ) )
{
// Create the scene geometry
if ( SUCCEEDED( InitGeometry() ) )
{
// Show the window
ShowWindow( hWnd, SW_SHOWDEFAULT );
UpdateWindow( hWnd );
// Enter the message loop
MSG msg;
ZeroMemory( & msg, sizeof (msg) );
while ( msg.message != WM_QUIT )
{
if ( PeekMessage( & msg, NULL, 0U , 0U , PM_REMOVE ) )
{
TranslateMessage( & msg );
DispatchMessage( & msg );
}
else
Render();
}
}
}
UnregisterClass( " D3D Tutorial " , wc.hInstance );
return 0 ;
}