内核版本:2.6.34
实现思路:
报文在网络协议栈中的流动,对于接收来讲,是对报文的脱壳的过程,由于报文是已知的输入,只要逐个解析协议号;对于发送来讲,是各层发送函数的嵌套调用,由于没有已知的输入,只能按事先设计好的协议进行层层构造。但无论报文怎样的流动,核心是报文所在设备(skb->dev)的变化,相当于各层之间传递的交接棒。
按照上述思路,brcm协议接收的处理作为模块brcm_packet_type加入到ptype_base中就可以了;brcm协议发送的处理则复杂一点,发送的嵌套调用完全是依赖于设备来推动的,因此要有一种新创建的设备X,插入到vlan设备和网卡设备之间。
因此,至少要有brcm_packet_type来加入ptype_base和register_brcm_dev()来向系统注册设备X。进一步考虑,设备X在全局量init_net中有存储,但我们还需要知道设备X与vlan设备以及网卡设备是何种组织关系,所以在这里设计了brcm_group_hash来存储这种关系。为了对设备感兴趣的事件作出响应,添加自己的notifier到netdev_chain中。另外,为了用户空间具有一定控制能力(如创建、删除),还需要添加brcm相关的ioctl调用。为了让它看起来更完整,一种新的设备在proc中也应有对应项,用来调试和查看设备。
从最简单开始
要让网络协议栈能够接收一种新协议是很简单的,由于已经有报文作为输入,我们要做的仅仅是编写好brcm_packet_type,然后在注册模块时只用做一件事:dev_add_pack。
static int __init brcm_proto_init(void) { dev_add_pack(&brcm_packet_type); } static struct packet_type brcm_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_BRCM), .func = brcm_skb_recv, /* BRCM receive method */ }; int brcm_skb_recv(struct sk_buff *skb, struct net_device *dev, struct packet_type *ptype, struct net_device *orig_dev) { struct brcm_hdr *bhdr; struct brcm_rx_stats *rx_stats; skb = skb_share_check(skb, GFP_ATOMIC); if(!skb) goto err_free; bhdr = (struct brcm_hdr *)skb->data; rcu_read_lock(); skb_pull_rcsum(skb, BRCM_HLEN); // set protocol skb->protocol = bhdr->brcm_encapsulated_proto; // reorder skb skb = brcm_check_reorder_header(skb); if (!skb) goto err_unlock; netif_rx(skb); rcu_read_unlock(); return NET_RX_SUCCESS; err_unlock: rcu_read_unlock(); err_free: kfree_skb(skb); return NET_RX_DROP; }
注册这个模块后,协议栈就能正常接收带brcm报头的报文的,代码中ETH_P_BRCM是brcm的协议号,BRCM_HLEN是brcm的报头长度。正是由于有报文作为输入,接收变得十分简单。
但这仅仅是能接收而已,发送的报文还是不带brcm报头的,而且接收的这段代码也很粗略,没有变更skb的设备,没有记录流量,没有对brcm报头作有意义的处理,下面逐一进行添加。
设备的相关定义
一种设备就是net_device类型,而每种设备都有自己的私有变量,它存储在net_device末尾,定义如下,其中real_dev指向下层设备,这是最基本属性,其余可以视需要自己设定,brcm_rx_stats则是该设备接收流量统计:
struct brcm_dev_info{ struct net_device *real_dev; u16 brcm_port; unsigned char real_dev_addr[ETH_ALEN]; struct proc_dir_entry *dent; struct brcm_rx_stats __percpu *brcm_rx_stats; }; struct brcm_rx_stats { unsigned long rx_packets; unsigned long rx_bytes; unsigned long multicast; unsigned long rx_errors; };
设备间的关系问题
如果brcm仅仅是只有一个设备,则无需数据结构来存储这种关系,一个全局全变的brcm_dev就可以了。这里的设计考虑的是复杂的情况,可以存在多个下层设备,多个brcm设备,之间没有固定的关系。所以需要一种数据结构来存储这种关系- brcm_group_hash。下面是一个简单的图示:
各个数据结构定义如下:
static struct hlist_head brcm_group_hash[BRCM_GRP_HASH_SIZE]; struct brcm_group { struct hlist_node hlist; struct net_device *real_dev; int nr_ports; int killall; struct net_device *brcm_devices_array[BRCM_GROUP_ARRAY_LEN]; struct rcu_head rcu; };
brcm_group_hash作为全局变量存在,以hash表形式组织,brcm_group被插入到brcm_group_hash中,brcm_group存储了它与下层设备的关系(eth与brcm),real_dev指向e下层设备,而brcm设备则存储在brcm_devices_array数组中。
下面完成由下层设备转换成brcm设备的函数,brcm_port是报头中的值,可以自己设定它的含义,这里设定它表示报文来自于哪个端口。
struct net_device *find_brcm_dev(struct net_device *real_dev, u16 brcm_port) { struct brcm_group *grp = brcm_find_group(real_dev); if (grp) brcm_dev = grp->brcm_devices_array[brcm_port]; return NULL; }
因为在接收报文时,报文到达brcm层开始处理时,skb->dev指向的仍是下层设备,这时通过skb->dev查到brcm_group->real_dev相匹配的hash项,然后通过报文brcm报头的信息,确定brcm_group->brcm_devices_array中哪个brcm设备作为skb的新设备;
而在发送报文时,报文到达brcm层开始处理时,skb->dev指向的是brcm设备,为了继续向下传递,需要变更为它的下层设备,在设备数据net_device的私有数据部分,一般会存储一个指针,指向它的下层设备,因此skb->dev只要变更为brcm_dev_info(dev)->real_dev。
流量统计
在数据结构中,brcm设备的私有数据brcm_dev_info中brcm_rx_stats记录接收的流量信息;而dev->_tx[index]则会记录发送的流量信息。
在接收函数brcm_skb_rcv()中对于成功接收的报文会增加流量统计:
rx_stats = per_cpu_ptr(brcm_dev_info(skb->dev)->brcm_rx_stats, smp_processor_id()); rx_stats->rx_packets++; rx_stats->rx_bytes += skb->len;
在发送函数brcm_dev_hard_start_xmit()中对于发送的报文会增加相应流量统计:
if (likely(ret == NET_XMIT_SUCCESS)) { txq->tx_packets++; txq->tx_bytes += len; } else txq->tx_dropped++;
而brcm_netdev_ops->ndo_get_stats()即brcm_dev_get_stats()函数,则会将brcm网卡设备中记录的发送和接收流量信息汇总成通用的格式net_device_stats,像ifconfig等命令使用的就是net_device_stats转换后的结果。
完整收发函数
有了这些后接收函数brcm_skb_recv()就可以完整了,其中关于报头brcm_hdr的处理可以略过,由于是空想的协议,含义是可以自己设定的:
int brcm_skb_recv(struct sk_buff *skb, struct net_device *dev, struct packet_type *ptype, struct net_device *orig_dev) { struct brcm_hdr *bhdr; struct brcm_rx_stats *rx_stats; int op, brcm_port; skb = skb_share_check(skb, GFP_ATOMIC); if(!skb) goto err_free; bhdr = (struct brcm_hdr *)skb->data; op = bhdr->brcm_tag.brcm_53242_op; brcm_port = bhdr->brcm_tag.brcm_53242_src_portid- 23; rcu_read_lock(); // drop wrong brcm tag packet if (op != BRCM_RCV_OP || brcm_port < 1 || brcm_port > 27) goto err_unlock; skb->dev = find_brcm_dev(dev, brcm_port); if (!skb->dev) { goto err_unlock; } rx_stats = per_cpu_ptr(brcm_dev_info(skb->dev)->brcm_rx_stats, smp_processor_id()); rx_stats->rx_packets++; rx_stats->rx_bytes += skb->len; skb_pull_rcsum(skb, BRCM_HLEN); switch (skb->pkt_type) { case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ /* stats->broadcast ++; // no such counter :-( */ break; case PACKET_MULTICAST: rx_stats->multicast++; break; case PACKET_OTHERHOST: /* Our lower layer thinks this is not local, let's make sure. * This allows the VLAN to have a different MAC than the * underlying device, and still route correctly. */ if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) skb->pkt_type = PACKET_HOST; break; default: break; } // set protocol skb->protocol = bhdr->brcm_encapsulated_proto; // reorder skb skb = brcm_check_reorder_header(skb); if (!skb) { rx_stats->rx_errors++; goto err_unlock; } netif_rx(skb); rcu_read_unlock(); return NET_RX_SUCCESS; err_unlock: rcu_read_unlock(); err_free: kfree_skb(skb); return NET_RX_DROP; }
同时,发送函数brcm_dev_hard_start_xmit()可以完整了,同样,其中关于brcm_hdr的处理可以略过:
static netdev_tx_t brcm_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { int i = skb_get_queue_mapping(skb); struct netdev_queue *txq = netdev_get_tx_queue(dev, i); struct brcm_ethhdr *beth = (struct brcm_ethhdr *)(skb->data); unsigned int len; u16 brcm_port; int ret; /* Handle non-VLAN frames if they are sent to us, for example by DHCP. * * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... */ if (beth->h_brcm_proto != htons(ETH_P_BRCM)){ //unsigned int orig_headroom = skb_headroom(skb); brcm_t brcm_tag; brcm_port = brcm_dev_info(dev)->brcm_port; if (brcm_port == BRCM_ANY_PORT) { brcm_tag.brcm_op_53242 = 0; brcm_tag.brcm_tq_53242 = 0; brcm_tag.brcm_te_53242 = 0; brcm_tag.brcm_dst_53242 = 0; }else { brcm_tag.brcm_op_53242 = BRCM_SND_OP; brcm_tag.brcm_tq_53242 = 0; brcm_tag.brcm_te_53242 = 0; brcm_tag.brcm_dst_53242 = brcm_port + 23; } skb = brcm_put_tag(skb, *(u32 *)(&brcm_tag)); if (!skb) { txq->tx_dropped++; return NETDEV_TX_OK; } } skb_set_dev(skb, brcm_dev_info(dev)->real_dev); len = skb->len; ret = dev_queue_xmit(skb); if (likely(ret == NET_XMIT_SUCCESS)) { txq->tx_packets++; txq->tx_bytes += len; } else txq->tx_dropped++; return ret; }
注册设备
接收通过dev_add_pack(),就可以融入协议栈了,前面几篇的分析已经讲过通过ptype_base对报文进行脱壳。现在要融入的发送,函数已经完成了,既然发送是一种嵌套的调用,并且是由dev来推过的,那么发送函数的融入一定在设备进行注册时,作为设备的一种发送方法。
创建一种设备时,一定会有设备的XXX_setup()初始化,大部分设备都会用ether_setup()来作初始化,再进行适当更改。下面是brcm_setup():
void brcm_setup(struct net_device *dev) { ether_setup(dev); dev->priv_flags |= IFF_BRCM_TAG; dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; dev->tx_queue_len = 0; dev->netdev_ops = &brcm_netdev_ops; dev->destructor = free_netdev; dev->ethtool_ops = &brcm_ethtool_ops; memset(dev->broadcast, 0, ETH_ALEN); }
其中发送函数就在brcm_netdev_ops中,每层设备都会这样调用:dev->netdev_ops->ndo_start_xmit()。
static const struct net_device_ops brcm_netdev_ops = { .ndo_change_mtu = brcm_dev_change_mtu, .ndo_init = brcm_dev_init, .ndo_uninit = brcm_dev_uninit, .ndo_open = brcm_dev_open, .ndo_stop = brcm_dev_stop, .ndo_start_xmit = brcm_dev_hard_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = brcm_dev_set_mac_address, .ndo_set_rx_mode = brcm_dev_set_rx_mode, .ndo_set_multicast_list = brcm_dev_set_rx_mode, .ndo_change_rx_flags = brcm_dev_change_rx_flags, //.ndo_do_ioctl = brcm_dev_ioctl, .ndo_neigh_setup = brcm_dev_neigh_setup, .ndo_get_stats = brcm_dev_get_stats, };而设备的初始化应该发生在创建设备时,也就是向网络注册它时,也就是register_brcm_dev(),注册一个新设备,需要知道它的下层设备real_dev以及唯一标识brcm设备的brcm_port。首先确定该设备没有被创建,然后用alloc_netdev_mq创建新设备new_dev,然后设置相关属性,特别是它的私有属性brcm_dev_info(new_dev),然后添加它到brcm_group_hash中,最后发生真正的注册register_netdevice()。
static int register_brcm_dev(struct net_device *real_dev, u16 brcm_port) { struct net_device *new_dev; struct net *net = dev_net(real_dev); struct brcm_group *grp; char name[IFNAMSIZ]; int err; if(brcm_port >= BRCM_PORT_MASK) return -ERANGE; // exist yet if (find_brcm_dev(real_dev, brcm_port) != NULL) return -EEXIST; snprintf(name, IFNAMSIZ, "brcm%i", brcm_port); new_dev = alloc_netdev_mq(sizeof(struct brcm_dev_info), name, brcm_setup, 1); if (new_dev == NULL) return -ENOBUFS; new_dev->real_num_tx_queues = real_dev->real_num_tx_queues; dev_net_set(new_dev, net); new_dev->mtu = real_dev->mtu; brcm_dev_info(new_dev)->brcm_port = brcm_port; brcm_dev_info(new_dev)->real_dev = real_dev; brcm_dev_info(new_dev)->dent = NULL; //new_dev->rtnl_link_ops = &brcm_link_ops; grp = brcm_find_group(real_dev); if (!grp) grp = brcm_group_alloc(real_dev); err = register_netdevice(new_dev); if (err < 0) goto out_free_newdev; /* Account for reference in struct vlan_dev_info */ dev_hold(real_dev); brcm_group_set_device(grp, brcm_port, new_dev); return 0; out_free_newdev: free_netdev(new_dev); return err; }
ioctl
由于brcm设备可以存在多个,并且和下层设备不是固定的对应关系,因此它的创建应该可以人为控制,因此通过ioctl由用户进行创建。这里只为brcm提供了两种操作-添加与删除。一种设备添加一定是与下层设备成关系的,因此添加时需要手动指明这种下层设备,然后通过__dev_get_by_name()从网络空间中找到这种设备,就可以调用register_brcm_dev()来完成注册了。而设备的删除则是直接删除,直接删除unregister_brcm_dev()。
static int brcm_ioctl_handler(struct net *net, void __user *arg) { int err; struct brcm_ioctl_args args; struct net_device *dev = NULL; if (copy_from_user(&args, arg, sizeof(struct brcm_ioctl_args))) return -EFAULT; /* Null terminate this sucker, just in case. */ args.device1[23] = 0; args.u.device2[23] = 0; rtnl_lock(); switch (args.cmd) { case ADD_BRCM_CMD: case DEL_BRCM_CMD: err = -ENODEV; dev = __dev_get_by_name(net, args.device1); if (!dev) goto out; err = -EINVAL; if (args.cmd != ADD_BRCM_CMD && !is_brcm_dev(dev)) goto out; } switch (args.cmd) { case ADD_BRCM_CMD: err = -EPERM; if (!capable(CAP_NET_ADMIN)) break; err = register_brcm_dev(dev, args.u.port); break; case DEL_BRCM_CMD: err = -EPERM; if (!capable(CAP_NET_ADMIN)) break; unregister_brcm_dev(dev, NULL); err = 0; break; default: err = -EOPNOTSUPP; break; } out: rtnl_unlock(); return err; }
这些是brcm协议模块的主体部分了,当然它还不完整,在下篇中继续完成brcm协议的添加,为它完善一些细节:proc文件系统, notifier机制等等,以及内核Makefile的编写,当然还有协议的测试。相关源码在下篇中打包上传。