/*烟台大学计算机与控制工程学院 时间2015年12月14日 作者:孙潇 问题描述:假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。 求图中通过某顶点k的所有简单回路(若存在) 输入描述:无 输出描述:若干数据 */
#include <stdio.h> #include <malloc.h> #include "graph.h" int visited[MAXV]; //全局变量 void DFSPath(ALGraph *G,int u,int v,int path[],int d) //d是到当前为止已走过的路径长度,调用时初值为-1 { int w,i; ArcNode *p; visited[u]=1; d++; path[d]=u; p=G->adjlist[u].firstarc; //p指向顶点u的第一条边 while (p!=NULL) { w=p->adjvex; //w为顶点u的相邻点 if (w==v && d>0) //找到一个回路,输出之 { printf(" "); for (i=0; i<=d; i++) printf("%d ",path[i]); printf("%d \n",v); } if (visited[w]==0) //w未访问,则递归访问之 DFSPath(G,w,v,path,d); p=p->nextarc; //找u的下一个邻接顶点 } visited[u]=0; //恢复环境:使该顶点可重新使用 } void FindCyclePath(ALGraph *G,int k) //输出经过顶点k的所有回路 { int path[MAXV],i; for (i=0; i<G->n; i++) visited[i]=0; //访问标志数组初始化 printf("经过顶点%d的所有回路\n",k); DFSPath(G,k,k,path,-1); printf("\n"); } int main() { ALGraph *G; int A[5][5]= { {0,1,1,0,0}, {0,0,1,0,0}, {0,0,0,1,1}, {0,0,0,0,1}, {1,0,0,0,0} }; //请画出对应的有向图 ArrayToList(A[0], 5, G); FindCyclePath(G, 0); return 0; }
附:测试用图结构、输出结果
运行结果: