源代码:
%%%%%%%VERSION 1 %The Gabor filter is basically a Gaussian (with variances sx and sy along x and y-axes respectively) %modulated by a complex sinusoid (with centre frequencies U and V along x and y-axes respectively) %described by the following equation %% % 1 -1 x ^ y ^ %%% G(x,y) = ---------- * exp ([----{(----) 2+(----) 2}+2*pi*i*(Ux+Vy)]) % 2*pi*sx*sy 2 sx sy %% Describtion : %% I : Input image %% Sx & Sy : Variances along x and y-axes respectively %% U & V : Centre frequencies along x and y-axes respectively %% G : The output filter as described above %% gabout : The output filtered image %% Author : Ahmad poursaberi e-mail : [email protected] %% Faulty of Engineering, Electrical&Computer Department,Tehran %% University,Iran,June 2004 function [G,gabout] = gaborfilter(I,Sx,Sy,U,V) if isa(I,'double')~=1 I = double(I); end for x = -fix(Sx):fix(Sx) for y = -fix(Sy):fix(Sy) G(fix(Sx)+x+1,fix(Sy)+y+1) = (1/(2*pi*Sx*Sy))*exp(-.5*((x/Sx)^2+(y/Sy)^2)+2*pi*i*(U*x+V*y)); end end Imgabout = conv2(I,double(imag(G)),'same'); Regabout = conv2(I,double(real(G)),'same'); gabout = uint8(sqrt(Imgabout.*Imgabout + Regabout.*Regabout));
调用代码:
close all; clear all; clc; % 读入图像 image=imread('C:\Users\watkins\Pictures\cartoon.jpg'); grayImage=rgb2gray(image); grayImage=im2double(grayImage); % 显示读入图像 imshow(grayImage); sx=32; sy=32; theta=[0 pi/4 2*pi/4 3*pi/4 4*pi/4 5*pi/4 6*pi/4 7*pi/4]; gamma=1; psi=0; sigma=6; % 也可以为12 lambda=[5 6 7 8 9]; V=[4 5 6 7 8]; U=[0 pi/4 2*pi/4 3*pi/4 4*pi/4 5*pi/4 6*pi/4 7*pi]; %U=[1 2 3 4 5 6 7 8]; % Creating 40 Gabor Filters G = cell(5,8); for i = 1:5 for j = 1:8 G{i,j}=zeros(65,65); end end for i = 1:5 for j = 1:8 [T,gabout] = gaborfilter(grayImage,sx,sy,U(j),V(i)); G{i,j} = T; end end % Showing Gabor Filters figure; for s = 1:5 for j = 1:8 subplot(5,8,(s-1)*8+j); %imshow(real(G{s,j})/2-0.5,[]); imshow(real(G{s,j}),[]); end end
滤波器组图片:
不明白为什么滤波器组的图片是这样,还希望哪位大侠帮忙指点一下?