题目:10173 - Smallest Bounding Rectangle
求凸包的最小外接矩形的面积。
思路:
旋转卡壳
给定点集S,求S的最小覆盖矩形
最小覆盖矩形的四条边上,其中一条边有至少两个点,其他边上至少有一个点。
然后沿着凸包的边旋转,维护矩形另外三条边上的点。
#include<stdio.h> #include<cmath> #include<algorithm> #define eps 1e-8 #define N 50010 using namespace std; struct Point { double x,y; Point(){} Point(double x0,double y0):x(x0),y(y0){} }; Point p[N]; int con[N]; int cn; int n; struct Line { Point a,b; Line(){} Line(Point a0,Point b0):a(a0),b(b0){} }; double Xmult(Point o,Point a,Point b) { return (a.x-o.x)*(b.y-o.y)-(b.x-o.x)*(a.y-o.y); } double Dmult(Point o,Point a,Point b) { return (a.x-o.x)*(b.x-o.x)+(a.y-o.y)*(b.y-o.y); } int Sig(double a) { return a<-eps?-1:a>eps; } double Dis(Point a,Point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } int cmp(Point a,Point b) { double d=Xmult(p[0],a,b); if(d>0) return 1; if(d==0 && Dis(p[0],a)<Dis(p[0],b)) return 1; return 0; } double min(double a,double b) { return a<b?a:b; } void Graham() { int i,ind=0; for(i=1;i<n;i++) if(p[ind].y>p[i].y || (p[ind].y==p[i].y) && p[ind].x>p[i].x) ind=i; swap(p[ind],p[0]); sort(p+1,p+n,cmp); con[0]=0; con[1]=1; cn=1; for(i=2;i<n;i++) { while(cn>0 && Sig(Xmult(p[con[cn-1]],p[con[cn]],p[i]))<=0) cn--; con[++cn]=i; } int tmp=cn; for(i=n-2;i>=0;i--) { while(cn>tmp && Sig(Xmult(p[con[cn-1]],p[con[cn]],p[i]))<=0) cn--; con[++cn]=i; } } double Solve() { int t,r,l; double ans=999999999; t=r=1; if(cn<3) return 0; for(int i=0;i<cn;i++) { while(Sig( Xmult(p[con[i]],p[con[i+1]],p[con[t+1]])- Xmult(p[con[i]],p[con[i+1]],p[con[t]]) )>0) t=(t+1)%cn; while(Sig( Dmult(p[con[i]],p[con[i+1]],p[con[r+1]])- Dmult(p[con[i]],p[con[i+1]],p[con[r]]) )>0) r=(r+1)%cn; if(!i) l=r; while(Sig( Dmult(p[con[i]],p[con[i+1]],p[con[l+1]])- Dmult(p[con[i]],p[con[i+1]],p[con[l]]) )<=0) l=(l+1)%cn; double d=Dis(p[con[i]],p[con[i+1]]); double tmp=Xmult(p[con[i]],p[con[i+1]],p[con[t]])* ( Dmult(p[con[i]],p[con[i+1]],p[con[r]])- Dmult(p[con[i]],p[con[i+1]],p[con[l]]) )/d/d; ans=min(ans,tmp); } return ans; } int main() { int i; while(scanf("%d",&n) && n) { for(i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); Graham(); printf("%.4f\n",Solve()); } return 0; }