面试可能遇到的问题

野指针:

“野指针”不是NULL指针,是指向“垃圾”内存(不可用内存)的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if无法判断一个指针是正常指针还是“野指针”。有个良好的编程习惯是避免“野指针”的唯一方法。

野指针的成因主要有三种:

  一、指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。
  二、指针p被free或者delete之后,没有置为NULL,让人误以为p是个合法的指针。别看free和delete的名字恶狠狠的(尤其是delete),它们只是把指针所指的内存给释放掉,但并没有把指针本身干掉。通常会用语句if (p != NULL)进行防错处理。很遗憾,此时if语句起不到防错作用,因为即便p不是NULL指针,它也不指向合法的内存块。例:
  #include <stdio.h>
  #include <string.h>
  #include <malloc.h>
  int main(void)
  {
  char *p = (char *) malloc(100);
  strcpy(p, "hello");
  free(p); // p 所指的内存被释放,但是p所指的地址仍然不变,原来的内存变为“垃圾”内存(不可用内存
  if(p != NULL) // 没有起到防错作用
  strcpy(p, “world”);
  for(i=0;i<5;i++) //i=5后为乱码
  printf("%c",*(p+i));
  printf("\n");
  }
  另外一个要注意的问题:不要返回指向栈内存的指针或引用,因为栈内存在函数结束时会被释放。
  三、指针操作超越了变量的作用范围。这种情况让人防不胜防,示例程序如下:
  class A
  {
  public:
  void Func(void){ cout << “Func of class A” << endl; }
  };
  void Test(void)
  {
  A *p;
  {
  A a;
  p = &a; // 注意 a 的生命期 ,只在这个程序块中(花括号里面的两行),而不是整个test函数
  }
  p->Func(); // p 是“野指针”
  }
  函数 Test 在执行语句 p->Func()时,对象 a 已经消失,而 p 是指向 a 的,所以 p 就成了“野指针” 。

什么是Setup 和Holdup时间?

建立时间(setup time)是指在触发器的时钟信号上升沿到来以前,数据稳定不变的时间,如果建立时间不够,数据将不能在这个时钟上升沿被打入触发器;保持时间(hold time)是指在触发器的时钟信号上升沿到来以后,数据稳定不变的时间, 如果保持时间不够,数据同样不能被打入触发器。


什么是竞争与冒险现象?怎样判断?如何消除?

信号在FPGA器件内部通过连线和逻辑单元时,都有一定的延时。延时的大小与连线的长短和逻辑单元的数目有关,同时还受器件的制造工艺、工作电压、温度等条件的影响。信号的高低电平转换也需要一定的过渡时间。由于存在这两方面因素,多路信号的电平值发生变化时,在信号变化的瞬间,组合逻辑的输出有先后顺序,并不是同时变化,往往会出现一些不正确的尖峰信号,这些尖峰信号称为"毛刺"。如果一个组合逻辑电路中有"毛刺"出现,就说明该电路存在"冒险"。用D触发器,格雷码计数器,同步电路等优秀的设计方案可以消除。


什么是"线与"逻辑,要实现它,在硬件特性上有什么具体要求? 
   将几个OC门结构与非门输出并联,当每个OC门输出为高电平时,总输出才为高,这种连接方式称为线与。

什么是同步逻辑和异步逻辑? 
   整个设计中只有一个全局时钟成为同步逻辑。
   多时钟系统逻辑设计成为异步逻辑。

在操作系统下中断的执行过程(软件 操作系统)

在wince或linux下,产生了某个中断,首先进入中断异常---->汇编的处理代码,保存中断环境,关中断,等等,(c代码)查询中断号---->利用中断号作为偏移量,得到一个指针,可能是函数指针也可能包含函数指针的结构---->执行和中断源相关的中断处理程序(user)---->中断返回。

      需要说明的是也可能早就中断返回了,把剩余的事情用IST来实现。

      用户的中断函数都要注册,注册的作用就是把其函数指针放到固定的中断向量表里或者指向的数据结构里(linux)                                                     不同ARM对于中断的处理不太相同(硬件实现),Philips ARM7会把函数指针放到专门的寄存器里,三星的2440就不会,所以软件实现的方法也不一样,一般而言要设置一块RAM来放置中断向量表,在操作系统的OEM层的中断处理程序会读中断号,作为偏移量找到对应的中断函数,而我们也要在某个时候把中断函数地址放到这个向量中,这个也就是所谓的中断函数的注册。

Linux中断执行过程

当执行了一条指令后,CS和eip这对寄存器包含下一条将要执行的指令的逻辑地址。在处理那条指令之前,控制单元会检查在运行前一条指令时是否已经发生了一个中断或异常。如果发生了一个中断或异常,那么控制单元执行下列操作:


1. 确定与中断或异常关联的向量i (0 ≤ i ≤ 255)。
2. 读由idtr寄存器指向的 IDT表中的第i项。
3. 从gdtr寄存器获得GDT的基地址,并在GDT中查找,以读取IDT表项中的选择符所标识的段描述符。这个描述符将会是一个中断门或者一个陷阱门,其含有指定中断或异常处理程序所在段的基地址。
4. 确信中断是由授权的(中断)发生源发出的。首先将当前特权级CPL(存放在cs寄存器的低两位)与段描述符(存放在GDT中)的描述符特权级DPL比较,如果CPL小于DPL,就产生一个“General protection”异常,因为中断处理程序的特权不能低于引起中断的程序的特权。对于编程异常,则做进一步的安全检查:比较CPL与处于IDT中的门描述符的DPL,如果DPL小于CPL,就产生一个“General protection”异常。这最后一个检查可以避免用户应用程序访问特殊的陷阱门或中断门。
5. 检查是否发生了特权级的变化,也就是说,CPL是否不同于所选择的段描述符的DPL。如果是,控制单元必须开始使用与新的特权级相关的栈。通过执行以下步骤来做到这点:

i. 读tr寄存器,以访问运行进程的TSS段。

ii. 用与新特权级相关的栈段和栈指针的正确值装载ss和esp寄存器。这些值可以在TSS中找到。

iii. 在新的栈中保存ss和esp以前的值,这些值定义了与旧特权级相关的栈的逻辑地址。

6. 如果故障已发生,用引起异常的指令地址装载CS和eip寄存器,从而使得这条指令能再次被执行。
7. 在栈中保存eflags、CS及eip的内容。
8. 如果异常产生了一个硬件出错码,则将它保存在栈中。
9. 装载cs和eip寄存器,其值分别是IDT表中第i项门描述符的段选择符和偏移量字段。这些值给出了中断或者异常处理程序的第一条指令的逻辑地址。

控制单元所执行的最后一步就是跳转到中断或者异常处理程序。换句话说,处理完中断信号后,控制单元所执行的指令就是被选中处理程序的第一条指令。

中断或异常被处理完后,相应的处理程序必须产生一条iret指令,把控制权转交给被中断的进程,这将迫使控制单元:

1. 用保存在栈中的值装载CS、eip或eflags寄存器。如果一个硬件出错码曾被压入栈中,并且在eip内容的上面,那么,执行iret指令前必须先弹出这个硬件出错码。
2. 检查处理程序的CPL是否等于CS中最低两位的值(这意味着被中断的进程与处理程序运行在同一特权级)。如果是,iret终止执行;否则,转入下一步。
3. 从栈中装载ss和esp寄存器,因此,返回到与旧特权级相关的栈。
4. 检查ds、es、fs及gs段寄存器的内容,如果其中一个寄存器包含的选择符是一个段描述符,并且其DPL值小于CPL,那么,清相应的段寄存器。控制单元这么做是为了禁止用户态的程序(CPL=3)利用内核以前所用的段寄存器(DPL=0)。如果不清这些寄存器,怀有恶意的用户态程序就可能利用它们来访问内核地址空间。

堆和栈的区别

一个由c/C++编译的程序占用的内存分为以下几个部分 

1、栈区(stack)―   由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 

2、堆区(heap) ―   一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 

3、全局区(静态区)(static)―,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放 

4、文字常量区  ―常量字符串就是放在这里的。 程序结束后由系统释放 

5、程序代码区―存放函数体的二进制代码。 

二、例子程序 

这是一个前辈写的,非常详细 

//main.cpp 

int a = 0; 全局初始化区 

char *p1; 全局未初始化区 

main() 

{ 

int b; 栈 

char s[] = "abc"; 栈 

char *p2; 栈 

char *p3 = "123456"; 123456\0在常量区,p3在栈上。 

static int c =0; 全局(静态)初始化区 

p1 = (char *)malloc(10); 

p2 = (char *)malloc(20); 

分配得来得10和20字节的区域就在堆区。 

strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 

} 

二、堆和栈的理论知识 

2.1申请方式 

stack: 

由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间 

heap: 

需要程序员自己申请,并指明大小,在c中malloc函数 

如p1 = (char *)malloc(10); 

在C++中用new运算符 

如p2 = (char *)malloc(10); 

但是注意p1、p2本身是在栈中的。 

2.2 

申请后系统的响应 

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。 

堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时, 

会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 

2.3申请大小的限制 

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。 

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。 

2.4申请效率的比较: 

栈由系统自动分配,速度较快。但程序员是无法控制的。 

堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便. 

另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。 

2.5堆和栈中的存储内容 

栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。 

当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。 

堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。 

2.6存取效率的比较 

char s1[] = "aaaaaaaaaaaaaaa"; 

char *s2 = "bbbbbbbbbbbbbbbbb"; 

aaaaaaaaaaa是在运行时刻赋值的; 

而bbbbbbbbbbb是在编译时就确定的; 

但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。 

比如: 

#include 

void main() 

{ 

char a = 1; 

char c[] = "1234567890"; 

char *p ="1234567890"; 

a = c[1]; 

a = p[1]; 

return; 

} 

对应的汇编代码 

10: a = c[1]; 

00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh] 

0040106A 88 4D FC mov byte ptr [ebp-4],cl 

11: a = p[1]; 

0040106D 8B 55 EC mov edx,dword ptr [ebp-14h] 

00401070 8A 42 01 mov al,byte ptr [edx+1] 

00401073 88 45 FC mov byte ptr [ebp-4],al 

第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。 

2.7小结: 

堆和栈的区别可以用如下的比喻来看出: 

使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。 

使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。










你可能感兴趣的:(数据结构,windows,面试,null,delete,编译器)