JSTSC 2010 nova
题意:给你N个lich,M个wizard,K个半径为Ri的wood (N,M,K<=200)
第i个lich每Ti秒能杀死一个在Ri范围的wizard,但前提是lich跟wizard的连线与任何一个wood没有交
求最少多少时间lich能杀死所有wizard 或者判无解
做法:
首先可以想到 如果固定一个时间 那么每个lich能杀的个数是固定的
所以先二分答案
预处理每个lich可以到达的wizard
然后可以用网络流求解了 S向第i个lich连容量N/Ti+1,lich向能打到的wizard连容量1,wizard向T连容量1。
(难点不在于建图,在于计算几何预处理!)
1
#include
<
cstdio
>
2 #include < cstring >
3 #include < algorithm >
4 using namespace std;
5 #define n 1005
6 #define m 200005
7 struct TElement
8 {
9 int x,y,r,t;
10 } lich[n],wizard[n],wood[n];
11 int vtx[m],ne[m],f[m],tot;
12 int L[n],d[n],pre[n],q[n];
13 int N,M,K,S,T,now,ret;
14 bool G[n][n];
15
16 inline int SQRdis( int x1, int y1, int x2, int y2)
17 {
18 return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
19 }
20 inline bool Inside( int x, int y)
21 {
22 for ( int i = 1 ;i <= K; ++ i)
23 if (SQRdis(x,y,wood[i].x,wood[i].y) < wood[i].r * wood[i].r) return 1 ;
24 return 0 ;
25 }
26 inline bool Block( int i, int j)
27 {
28 int b = SQRdis(lich[i].x,lich[i].y,wizard[j].x,wizard[j].y);
29 for ( int k = 1 ;k <= K; ++ k)
30 {
31 int a = SQRdis(lich[i].x,lich[i].y,wood[k].x,wood[k].y);
32 int c = SQRdis(wizard[j].x,wizard[j].y,wood[k].x,wood[k].y);
33 if (a + b < c || c + b < a) continue ;
34 double y = c - (b + c - a) * ( long long )(b + c - a) / ( 4.0 * b);
35 if (y <= wood[k].r * wood[k].r) return 1 ;
36 }
37 return 0 ;
38 }
39 inline void Ins( int u, int v, int fl)
40 {
41 vtx[ ++ tot] = v;f[tot] = fl;ne[tot] = L[u];L[u] = tot;
42 vtx[ ++ tot] = u;f[tot] = 0 ;ne[tot] = L[v];L[v] = tot;
43 }
44 inline void push()
45 {
46 int fl = 1 << 30 ;
47 for ( int i = T;i != S;i = vtx[pre[i] ^ 1 ])
48 fl = min(fl,f[pre[i]]);
49 ret += fl;
50 for ( int i = T;i != S;i = vtx[pre[i] ^ 1 ])
51 {
52 f[pre[i]] -= fl,f[pre[i] ^ 1 ] += fl;
53 if ( ! f[pre[i]]) now = vtx[pre[i] ^ 1 ];
54 }
55 }
56 inline void dinic( int u)
57 {
58 if (u == T) push();
59 else
60 {
61 for ( int p = L[u],v = vtx[p];p;v = vtx[p = ne[p]])
62 if (f[p] && d[u] + 1 == d[v])
63 {
64 pre[v] = p,dinic(v);
65 if (d[now] < d[u]) return ;
66 now = T;
67 }
68 d[u] =- 1 ;
69 }
70 }
71 inline bool extend()
72 {
73 memset(d, 63 , sizeof (d));
74 d[q[ 1 ] = S] = 0 ,now = T;
75 for ( int h = 1 ,t = 1 ,u = q[h];h <= t;u = q[ ++ h])
76 for ( int p = L[u],v = vtx[p];p;v = vtx[p = ne[p]])
77 if (f[p] && d[v] > ( 1 << 29 ))
78 {
79 d[v] = d[u] + 1 ;
80 if (v == T) return 1 ;
81 q[ ++ t] = v;
82 }
83 return 0 ;
84 }
85 inline bool check( int Time)
86 {
87 memset(L, 0 , sizeof (L));
88 tot = 1 ,ret = 0 ;
89 for ( int i = 1 ;i <= N; ++ i)
90 if (lich[i].t) Ins(S,i, 1 + Time / lich[i].t);
91 else Ins(S,i, 1 << 30 );
92 for ( int i = 1 ;i <= N; ++ i)
93 for ( int j = 1 ;j <= M; ++ j)
94 if (G[i][j]) Ins(i,j + N, 1 );
95 for ( int j = 1 ;j <= M; ++ j)
96 Ins(j + N,T, 1 );
97 for (;extend();dinic(S));
98 return ret == M;
99 }
100 int main()
101 {
102 scanf( " %d%d%d " , & N, & M, & K);
103 for ( int i = 1 ;i <= N; ++ i)
104 scanf( " %d%d%d%d " , & lich[i].x, & lich[i].y, & lich[i].r, & lich[i].t);
105 for ( int i = 1 ;i <= M; ++ i)
106 scanf( " %d%d " , & wizard[i].x, & wizard[i].y);
107 for ( int i = 1 ;i <= K; ++ i)
108 scanf( " %d%d%d " , & wood[i].x, & wood[i].y, & wood[i].r);
109 for ( int i = 1 ;i <= N; ++ i)
110 {
111 if (Inside(lich[i].x,lich[i].y)) continue ;
112 for ( int j = 1 ;j <= M; ++ j)
113 {
114 if (Inside(wizard[j].x,wizard[j].y)) continue ;
115 if (SQRdis(lich[i].x,lich[i].y,wizard[j].x,wizard[j].y) <= lich[i].r * lich[i].r)
116 if ( ! Block(i,j)) G[i][j] = 1 ;
117 }
118 }
119 S = N + M + 1 ,T = S + 1 ;
120 int l = 0 ,r = 2000000000 ,mid;
121 if ( ! check(r)) return puts( " -1 " ), 0 ;
122 if (check(l)) return puts( " 0 " ), 0 ;
123 for (;l + 1 < r;)
124 if (mid = (l + r) >> 1 ,check(mid)) r = mid;
125 else l = mid;
126 printf( " %d\n " ,r);
127 return 0 ;
128 }
129
2 #include < cstring >
3 #include < algorithm >
4 using namespace std;
5 #define n 1005
6 #define m 200005
7 struct TElement
8 {
9 int x,y,r,t;
10 } lich[n],wizard[n],wood[n];
11 int vtx[m],ne[m],f[m],tot;
12 int L[n],d[n],pre[n],q[n];
13 int N,M,K,S,T,now,ret;
14 bool G[n][n];
15
16 inline int SQRdis( int x1, int y1, int x2, int y2)
17 {
18 return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
19 }
20 inline bool Inside( int x, int y)
21 {
22 for ( int i = 1 ;i <= K; ++ i)
23 if (SQRdis(x,y,wood[i].x,wood[i].y) < wood[i].r * wood[i].r) return 1 ;
24 return 0 ;
25 }
26 inline bool Block( int i, int j)
27 {
28 int b = SQRdis(lich[i].x,lich[i].y,wizard[j].x,wizard[j].y);
29 for ( int k = 1 ;k <= K; ++ k)
30 {
31 int a = SQRdis(lich[i].x,lich[i].y,wood[k].x,wood[k].y);
32 int c = SQRdis(wizard[j].x,wizard[j].y,wood[k].x,wood[k].y);
33 if (a + b < c || c + b < a) continue ;
34 double y = c - (b + c - a) * ( long long )(b + c - a) / ( 4.0 * b);
35 if (y <= wood[k].r * wood[k].r) return 1 ;
36 }
37 return 0 ;
38 }
39 inline void Ins( int u, int v, int fl)
40 {
41 vtx[ ++ tot] = v;f[tot] = fl;ne[tot] = L[u];L[u] = tot;
42 vtx[ ++ tot] = u;f[tot] = 0 ;ne[tot] = L[v];L[v] = tot;
43 }
44 inline void push()
45 {
46 int fl = 1 << 30 ;
47 for ( int i = T;i != S;i = vtx[pre[i] ^ 1 ])
48 fl = min(fl,f[pre[i]]);
49 ret += fl;
50 for ( int i = T;i != S;i = vtx[pre[i] ^ 1 ])
51 {
52 f[pre[i]] -= fl,f[pre[i] ^ 1 ] += fl;
53 if ( ! f[pre[i]]) now = vtx[pre[i] ^ 1 ];
54 }
55 }
56 inline void dinic( int u)
57 {
58 if (u == T) push();
59 else
60 {
61 for ( int p = L[u],v = vtx[p];p;v = vtx[p = ne[p]])
62 if (f[p] && d[u] + 1 == d[v])
63 {
64 pre[v] = p,dinic(v);
65 if (d[now] < d[u]) return ;
66 now = T;
67 }
68 d[u] =- 1 ;
69 }
70 }
71 inline bool extend()
72 {
73 memset(d, 63 , sizeof (d));
74 d[q[ 1 ] = S] = 0 ,now = T;
75 for ( int h = 1 ,t = 1 ,u = q[h];h <= t;u = q[ ++ h])
76 for ( int p = L[u],v = vtx[p];p;v = vtx[p = ne[p]])
77 if (f[p] && d[v] > ( 1 << 29 ))
78 {
79 d[v] = d[u] + 1 ;
80 if (v == T) return 1 ;
81 q[ ++ t] = v;
82 }
83 return 0 ;
84 }
85 inline bool check( int Time)
86 {
87 memset(L, 0 , sizeof (L));
88 tot = 1 ,ret = 0 ;
89 for ( int i = 1 ;i <= N; ++ i)
90 if (lich[i].t) Ins(S,i, 1 + Time / lich[i].t);
91 else Ins(S,i, 1 << 30 );
92 for ( int i = 1 ;i <= N; ++ i)
93 for ( int j = 1 ;j <= M; ++ j)
94 if (G[i][j]) Ins(i,j + N, 1 );
95 for ( int j = 1 ;j <= M; ++ j)
96 Ins(j + N,T, 1 );
97 for (;extend();dinic(S));
98 return ret == M;
99 }
100 int main()
101 {
102 scanf( " %d%d%d " , & N, & M, & K);
103 for ( int i = 1 ;i <= N; ++ i)
104 scanf( " %d%d%d%d " , & lich[i].x, & lich[i].y, & lich[i].r, & lich[i].t);
105 for ( int i = 1 ;i <= M; ++ i)
106 scanf( " %d%d " , & wizard[i].x, & wizard[i].y);
107 for ( int i = 1 ;i <= K; ++ i)
108 scanf( " %d%d%d " , & wood[i].x, & wood[i].y, & wood[i].r);
109 for ( int i = 1 ;i <= N; ++ i)
110 {
111 if (Inside(lich[i].x,lich[i].y)) continue ;
112 for ( int j = 1 ;j <= M; ++ j)
113 {
114 if (Inside(wizard[j].x,wizard[j].y)) continue ;
115 if (SQRdis(lich[i].x,lich[i].y,wizard[j].x,wizard[j].y) <= lich[i].r * lich[i].r)
116 if ( ! Block(i,j)) G[i][j] = 1 ;
117 }
118 }
119 S = N + M + 1 ,T = S + 1 ;
120 int l = 0 ,r = 2000000000 ,mid;
121 if ( ! check(r)) return puts( " -1 " ), 0 ;
122 if (check(l)) return puts( " 0 " ), 0 ;
123 for (;l + 1 < r;)
124 if (mid = (l + r) >> 1 ,check(mid)) r = mid;
125 else l = mid;
126 printf( " %d\n " ,r);
127 return 0 ;
128 }
129