AVL树的C++实现

包括3个文件:AvlNode.h    AvlTree.h和main.cpp
1.节点类的定义AvlNode.h

#ifndef AVLNODE_H
#define AVLNODE_H
#include <iostream>
using namespace std;

template  <class T> class AvlTree; //声明AvlTree类

template <class T>
class AvlNode{
public:
       friend class AvlTree<T>;//友元类
       
      //构造函数
      AvlNode():left(NULL),right(NULL),balance(0){};
      AvlNode(const T& e,AvlNode<T> *lt = NULL,AvlNode<T> *rt = NULL):data(e),left(lt),right(rt),balance(0){};

      int getBalance() const{return balance;}
      AvlNode<T>* getLeft() const{return left;}
      AvlNode<T>* getRight() const{return right;}
      T getData() const{return data;}
private:
      T data;    //节点的值
      AvlNode *left;    //左孩子
      AvlNode *right;    //有孩子
      int balance;        //平衡因子,右子树的高度减去左子树的高度
};
#endif //AVLNODE_H

2.AvlTree.h

#ifndef AVLTREE_H
#define AVLTREE_H

#include <iostream>
#include <queue>
#include <iomanip>
#include "AvlNode.h"

using namespace std;

template <class T>
class AvlTree{
public:
       AvlTree():root(NULL){}
       AvlNode<T>* getRoot() const{return root;}

       bool Insert(T x){ bool taller = false; return Insert(root,x,taller ); }
       bool Delete(T x){ bool shorter = false; return Delete(root,x,shorter); }

       void PrintTree() const{PrintTree(root,0);}
       void PrintTreeLevel() const{PrintTreeLevel(root);}
       void PrintTreePre() const{PrintTreePre(root);}  
       void PrintTreePost() const{PrintTreePost(root);}             
       void PrintTreeIn() const{PrintTreeIn(root);}      
private:
        AvlNode<T> *root;

        bool Insert(AvlNode<T> *& sRoot,T x,bool &taller);
        bool Delete(AvlNode<T> *& sRoot,T x,bool &shorter);

        void RotateLeft(AvlNode<T> * &sRoot);
        void RotateRight(AvlNode<T> * &sRoot);

        void RightBalanceAfterInsert(AvlNode<T> * &sRoot,bool &taller);
        void LeftBalanceAfterInsert(AvlNode<T> * &sRoot,bool &taller);
        void RightBalanceAfterDelete(AvlNode<T> * &sRoot,bool &shorter);
        void LeftBalanceAfterDelete(AvlNode<T> * &sRoot,bool &shorter);

        void PrintTree(AvlNode<T> *t,int layer) const;
        void PrintTreeLevel(AvlNode<T> *t) const;
        void PrintTreePre(AvlNode<T> *t) const;       
        void PrintTreePost(AvlNode<T> *t) const;               
        void PrintTreeIn(AvlNode<T> *t) const;                 
};

template <typename T>
//左旋函数
void AvlTree<T>::RotateLeft(AvlNode<T> * &sRoot){
     if( (sRoot == NULL) || (sRoot->right == NULL) ) return;
    
     AvlNode<T> *temp = new AvlNode<T>(sRoot->data);
     if(temp == NULL ) return;
    
     temp->left = sRoot->left;
     sRoot->left = temp;
     temp->right = sRoot->right->left;
     AvlNode<T> *toDelete = sRoot->right;
     sRoot->data = toDelete->data;    
     sRoot->right = toDelete->right;
    
     delete toDelete;
}

template <typename T>
//右旋函数
void AvlTree<T>::RotateRight(AvlNode<T> * &sRoot){
     if( (sRoot == NULL) || (sRoot->left == NULL) ) return;
    
     AvlNode<T> *temp = new AvlNode<T>(sRoot->data);
     if(temp == NULL ) return;
    
     temp->right = sRoot->right;
     sRoot->right = temp;
     temp->left = sRoot->left->right;
     AvlNode<T> *toDelete = sRoot->left;
     sRoot->data = toDelete->data;
     sRoot->left = toDelete->left;
    
     delete toDelete;
}

template <typename T>
void AvlTree<T>::RightBalanceAfterInsert(AvlNode<T> *&sRoot,bool &taller){
    //如果插入节点后,sRoot的右高度增加引起不平衡,则调用此函数,使树重新平衡
    if( (sRoot == NULL) || (sRoot->right == NULL) ) return;
    AvlNode<T> *rightsub = sRoot->right,*leftsub;
    switch(rightsub->balance){
        case 1:
            sRoot->balance = rightsub->balance = 0;
            RotateLeft(sRoot);
            taller = false; break;
        case 0:
            cout<<"树已经平衡化."<<endl; break;
        case -1:
            leftsub = rightsub->left;
            switch(leftsub->balance){
                case 1:
                    sRoot->balance = -1; rightsub->balance = 0; break;
                case 0:
                    sRoot->balance = rightsub->balance = 0; break;
                case -1:
                    sRoot->balance = 0; rightsub->balance = 1; break;
            }
            leftsub->balance = 0;
            RotateRight(rightsub);
            RotateLeft(sRoot);
            taller = false; break;
    }
}

template <typename T>
void AvlTree<T>::LeftBalanceAfterInsert(AvlNode<T> *&sRoot,bool &taller){
    //如果插入节点后,sRoot的左高度增加,引起不平衡,则调用此函数,使树重新平衡
    AvlNode<T> *leftsub = sRoot->left,*rightsub;
    switch(leftsub->balance){
        case -1:
            sRoot->balance = leftsub->balance = 0;
            RotateRight(sRoot);
            taller = false; break;
        case 0:
            cout<<"树已经平衡化."<<endl; break;
        case 1:
            rightsub = leftsub->right;
            switch(rightsub->balance){
                case -1:
                    sRoot->balance = 1; leftsub->balance = 0; break;
                case 0:
                    sRoot->balance = leftsub->balance = 0; break;
                case 1:
                    sRoot->balance = 0; leftsub->balance = -1; break;
            }
            rightsub->balance = 0;
            RotateLeft(leftsub);
            RotateRight(sRoot);
            taller = false; break;
    }
}

template <typename T>
void AvlTree<T>::RightBalanceAfterDelete(AvlNode<T> * &sRoot,bool &shorter){
    //如果删除节点后,sRoot的左高度减少,引起不平衡,则调用此函数,使树重新平衡
    AvlNode<T> *rightsub = sRoot->right,*leftsub;
    switch(rightsub->balance){
        case 1: sRoot->balance = sRoot->balance = 0; RotateLeft(sRoot); break;
        case 0: sRoot->balance = 0; rightsub->balance = -1; RotateLeft(sRoot); break;
        case -1:
            leftsub = rightsub->left;
            switch(leftsub->balance){
                case -1: sRoot->balance = 0; rightsub->balance = 1; break;
                case 0: sRoot->balance = rightsub->balance = 0; break;
                case 1: sRoot->balance = -1; rightsub->balance = 0; break;
            }
            leftsub->balance = 0;
            RotateRight(rightsub);
            RotateLeft(sRoot);
            shorter = false; break;
    }
}

template <typename T>
void AvlTree<T>::LeftBalanceAfterDelete(AvlNode<T> * &sRoot,bool &shorter){
    //如果删除节点后,sRoot的右高度减少,引起不平衡,则调用此函数,使树重新平衡
    AvlNode<T> *leftsub = sRoot->left,*rightsub;
    switch(leftsub->balance){
        case 1: sRoot->balance = sRoot->balance = 0; RotateRight(sRoot); break;
        case 0: sRoot->balance = 0; leftsub->balance = -1; RotateRight(sRoot); break;
        case -1:
            rightsub = leftsub->right;
            switch(rightsub->balance){
                case -1: sRoot->balance = 0; leftsub->balance = 1; break;
                case 0: sRoot->balance = leftsub->balance = 0; break;
                case 1: sRoot->balance = -1; leftsub->balance = 0; break;
            }
            rightsub->balance = 0;
            RotateLeft(leftsub);
            RotateRight(sRoot);
            shorter = false; break;
    }
}

template <typename T>
bool AvlTree<T>::Insert(AvlNode<T> *& sRoot,T x,bool &taller){
    //递归函数,从sRoot这棵树寻找合适的位置,插入值为x的节点
    bool success;
    if ( sRoot == NULL ) {//函数的出口,从叶节点插入
       sRoot = new AvlNode<T>(x);
       success = sRoot != NULL ? true : false;
       if ( success ) taller = true;
    }
    else if ( x < sRoot->data ) {//如果x的值小于sRoot的值
       
       //Insert的递归调用,从sRoot的左子树寻找合适的位置插入
       success = Insert ( sRoot->left, x, taller );
       if ( taller ){//如果插入后使得sRoot的左高度增加
             switch ( sRoot->balance ) {
                case -1 : LeftBalanceAfterInsert( sRoot, taller ); break;
                case 0 :  sRoot->balance = -1; break;
                case 1 :  sRoot->balance = 0;  taller = false; break; 
            }     
        }
    }
    else if ( x > sRoot->data ) {//如果x的值大于sRoot的值
   
       //Insert的递归调用,从sRoot的右子树寻找合适的位置插入
       success = Insert ( sRoot->right, x, taller );
      
       if ( taller ){//如果插入后使得sRoot的右高度增加
          switch ( sRoot->balance ) {             
            case -1 : sRoot->balance = 0; taller = false; break;
            case 0 :  sRoot->balance = 1; break; 
            case 1 :  RightBalanceAfterInsert( sRoot, taller ); break;
        }
     }
    }
    return success;   
}

template <typename T>
bool AvlTree<T>::Delete(AvlNode<T> *& sRoot,T x,bool &shorter){
    //递归函数,从sRoot这棵子树寻找值为x的节点,并删除之.
    bool success = false;
    if(sRoot == NULL) return false; //空树,操作失败
    if(x == sRoot->data) {//如果sRoot就是要删除的节点
        if(sRoot->left != NULL && sRoot->right != NULL) {//如果sRoot有个子女
       
            //寻找 sRoot的中序遍历的前驱节点,用r表示
            AvlNode<T> *r = sRoot->left;
            while(r->right != NULL) {
                 r = r->right;
            }
           
            //交换sRoot和r的值
            T temp = sRoot->data;
            sRoot->data = r->data;
            r->data = temp;
           
            //递归函数调用,从sRoot的左子树寻找值为x的节点,并删除之.
            success = Delete(sRoot->left, x, shorter);
            if(shorter) {//如果删除后引起sRoot的左高度减少
                switch(sRoot->balance) {
                    case -1: sRoot->balance = 0; break;
                    case 0: sRoot->balance = 1; shorter = 0; break;
                    case 1: RightBalanceAfterDelete(sRoot, shorter);break;
                }
            }
        }
        else {//sRoot最多只有一个子女,这是递归的出口
             AvlNode<T> *p = sRoot;
             sRoot = sRoot->left != NULL ? sRoot->left : sRoot->right;//令sRoot指向它的子女
             delete p;//释放原来sRoot所占的内存空间
             success = true;
             shorter = true;
        }
    }

    else if(x < sRoot->data) {
        //递归函数调用,从sRoot的左子树寻找值为x的节点,并删除之.
        success = Delete(sRoot->left, x, shorter);
        if(shorter) {//如果删除后引起sRoot的左高度减少
            switch(sRoot->balance) {
                case -1: sRoot->balance = 0; break;
                case 0: sRoot->balance = 1; shorter = 0; break;
                case 1: RightBalanceAfterDelete(sRoot, shorter); break;
            }
        }
    }

    else if(x > sRoot->data) {
        //递归函数调用,从sRoot的右子树寻找值为x的节点,并删除之.
        success = Delete(sRoot->right, x, shorter);
        if(shorter) {//如果删除后引起sRoot的右高度减少
            switch(sRoot->balance) {
                case -1: LeftBalanceAfterDelete(sRoot, shorter); break;
                case 0: sRoot->balance = -1; shorter = 0; break;
                case 1: sRoot->balance = 0; break;
            }
        }
    }
    return success;
}


template <typename T>
void AvlTree<T>::PrintTree(AvlNode<T> *t,int layer) const{
    if(t == NULL ) return;
    if(t->right) PrintTree(t->right,layer+1);
    for(int i =0;i<layer;i++) cout<<"    ";
    cout<<t->data<<endl;
    if(t->left) PrintTree(t->left,layer+1);
}
template <typename T>
void AvlTree<T>::PrintTreeLevel(AvlNode<T> *t) const{
     if(t == NULL) return;
     queue<AvlNode<T>*> NodeQueue;
     AvlNode<T> *node;
     NodeQueue.push(t);
     while(!NodeQueue.empty()){
        node = NodeQueue.front();
        NodeQueue.pop();
        cout<<node->data<<",";
        if(node->left != NULL) NodeQueue.push(node->left);
        if(node->right != NULL) NodeQueue.push(node->right);                              
    }
}

template <typename T>
void AvlTree<T>::PrintTreePre(AvlNode<T> *t) const{
     if(t){
          cout<<t->data<<",";
          PrintTreePre(t->left);
          PrintTreePre(t->right);    
     }
}

template <typename T>
void AvlTree<T>::PrintTreePost(AvlNode<T> *t) const{
     if(t){
          PrintTreePost(t->left);
          PrintTreePost(t->right);    
          cout<<t->data<<",";
     }
}

template <typename T>
void AvlTree<T>::PrintTreeIn(AvlNode<T> *t) const{
     if(t){
          PrintTreeIn(t->left);
          cout<<t->data<<",";    
          PrintTreeIn(t->right);    
     }
}
#endif //AVLsRoot_H

3.main.cpp

#include <iostream>
#include <stdlib.h>
#include "AvlTree.h"
//#include "BTree.h"
//#include "BSTree.h"
using namespace std;
int main(){
    AvlTree<int> l;
    for(int i = 1 ; i <= 15 ; i++){
        l.Insert(i);
    }
    l.PrintTree();
    while(true){
        int toDelete;
        cout<<"请输入要删除节点的值:"<<endl;
        cin>>toDelete;
        l.Delete(toDelete);
        cout<<"删除后的树为:"<<endl;
        l.PrintTree();
    }
    return 0;
    system("PAUSE");
}
       

你可能感兴趣的:(C++,null,delete,Class,insert,layer)