原帖开始链接:http://blog.csdn.net/morewindows/article/details/6657829
http://www.cnblogs.com/morewindows/archive/2011/08/13/2137415.html
冒泡排序是非常容易理解和实现,,以从小到大排序举例:
设数组长度为N。
1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换。
2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置。
3.N=N-1,如果N不为0就重复前面二步,否则排序完成。
按照定义很容易写出代码:
下面对其进行优化,设置一个标志,如果这一趟发生了交换,则为true,否则为false。明显如果有一趟没有发生交换,说明排序已经完成。
再做进一步的优化。如果有100个数的数组,仅前面10个无序,后面90个都已排好序且都大于前面10个数字,那么在第一趟遍历后,最后发生交换的位置必定小于10,且这个位置之后的数据必定已经有序了,记录下这位置,第二次只要从数组头部遍历到这个位置就可以了。
冒泡排序毕竟是一种效率低下的排序方法,在数据规模很小时,可以采用。数据规模比较大时,最好用其它排序方法。
直接插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止。
设数组为a[0…n-1]。
1. 初始时,a[0]自成1个有序区,无序区为a[1..n-1]。令i=1
2. 将a[i]并入当前的有序区a[0…i-1]中形成a[0…i]的有序区间。
3. i++并重复第二步直到i==n-1。排序完成。
下面给出严格按照定义书写的代码(由小到大排序):
这样的代码太长了,不够清晰。现在进行一下改写,将搜索和数据后移这二个步骤合并。即每次a[i]先和前面一个数据a[i-1]比较,如果a[i] > a[i-1]说明a[0…i]也是有序的,无须调整。否则就令j=i-1,temp=a[i]。然后一边将数据a[j]向后移动一边向前搜索,当有数据a[j]<a[i]时停止并将temp放到a[j + 1]处。
再对将a[j]插入到前面a[0…j-1]的有序区间所用的方法进行改写,用数据交换代替数据后移。如果a[j]前一个数据a[j-1] > a[j],就交换a[j]和a[j-1],再j--直到a[j-1] <= a[j]。这样也可以实现将一个新数据新并入到有序区间。
希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。
该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。
以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例
第一次 gap = 10 / 2 = 5
49 38 65 97 26 13 27 49 55 4
1A 1B
2A 2B
3A 3B
4A 4B
5A 5B
1A,1B,2A,2B等为分组标记,数字相同的表示在同一组,大写字母表示是该组的第几个元素, 每次对同一组的数据进行直接插入排序。即分成了五组(49, 13) (38, 27) (65, 49) (97, 55) (26, 4)这样每组排序后就变成了(13, 49) (27, 38) (49, 65) (55, 97) (4, 26),下同。
第二次 gap = 5 / 2 = 2
排序后
13 27 49 55 4 49 38 65 97 26
1A 1B 1C 1D 1E
2A 2B 2C 2D 2E
第三次 gap = 2 / 2 = 1
4 26 13 27 38 49 49 55 97 65
1A 1B 1C 1D 1E 1F 1G 1H 1I 1J
第四次 gap = 1 / 2 = 0 排序完成得到数组:
4 13 26 27 38 49 49 55 65 97
下面给出严格按照定义来写的希尔排序
很明显,上面的shellsort1代码虽然对直观的理解希尔排序有帮助,但代码量太大了,不够简洁清晰。因此进行下改进和优化,以第二次排序为例,原来是每次从1A到1E,从2A到2E,可以改成从1B开始,先和1A比较,然后取2B与2A比较,再取1C与前面自己组内的数据比较…….。这种每次从数组第gap个元素开始,每个元素与自己组内的数据进行直接插入排序显然也是正确的。
再将直接插入排序部分用 白话经典算法系列之二 直接插入排序的三种实现 中直接插入排序的第三种方法来改写下:
这样代码就变得非常简洁了。
附注:上面希尔排序的步长选择都是从n/2开始,每次再减半,直到最后为1。其实也可以有另外的更高效的步长选择
快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用,再加上快速排序思想----分治法也确实实用,因此很多软件公司的笔试面试,包括像腾讯,微软等知名IT公司都喜欢考这个,还有大大小的程序方面的考试如软考,考研中也常常出现快速排序的身影。
总的说来,要直接默写出快速排序还是有一定难度的,因为本人就自己的理解对快速排序作了下白话解释,希望对大家理解有帮助,达到快速排序,快速搞定。
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明:挖坑填数+分治法:
先来看实例吧,定义下面再给出(最好能用自己的话来总结定义,这样对实现代码会有帮助)。
以一个数组作为示例,取区间第一个数为基准数。
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
72 |
6 |
57 |
88 |
60 |
42 |
83 |
73 |
48 |
85 |
初始时,i = 0; j = 9; X = a[i] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++; 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;
数组变为:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
48 |
6 |
57 |
88 |
60 |
42 |
83 |
73 |
88 |
85 |
i = 3; j = 7; X=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
数组变为:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
48 |
6 |
57 |
42 |
60 |
72 |
83 |
73 |
88 |
85 |
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
照着这个总结很容易实现挖坑填数的代码:
int AdjustArray(int s[], int l, int r) //返回调整后基准数的位置
{
int i = l, j = r;
int x = s[l]; //s[l]即s[i]就是第一个坑
while (i < j)
{
// 从右向左找小于x的数来填s[i]
while(i < j && s[j] >= x)
j--;
if(i < j)
{
s[i] = s[j]; //将s[j]填到s[i]中,s[j]就形成了一个新的坑
i++;
}
// 从左向右找大于或等于x的数来填s[j]
while(i < j && s[i] < x)
i++;
if(i < j)
{
s[j] = s[i]; //将s[i]填到s[j]中,s[i]就形成了一个新的坑
j--;
}
}
//退出时,i等于j。将x填到这个坑中。
s[i] = x;
return i;
}
再写分治法的代码:
void quick_sort1(int s[], int l, int r)
{
if (l < r)
{
int i = AdjustArray(s, l, r);//先成挖坑填数法调整s[]
quick_sort1(s, l, i - 1); // 递归调用
quick_sort1(s, i + 1, r);
}
}
这样的代码显然不够简洁,对其组合整理下:
//快速排序
void quick_sort(int s[], int l, int r)
{
if (l < r)
{
//Swap(s[l], s[(l + r) / 2]); //将中间的这个数和第一个数交换 参见注1
int i = l, j = r, x = s[l];
while (i < j)
{
while(i < j && s[j] >= x) // 从右向左找第一个小于x的数
j--;
if(i < j)
s[i++] = s[j];
while(i < j && s[i] < x) // 从左向右找第一个大于等于x的数
i++;
if(i < j)
s[j--] = s[i];
}
s[i] = x;
quick_sort(s, l, i - 1); // 递归调用
quick_sort(s, i + 1, r);
}
}
快速排序还有很多改进版本,如随机选择基准数,区间内数据较少时直接用另的方法排序以减小递归深度。有兴趣的筒子可以再深入的研究下。
注1,有的书上是以中间的数作为基准数的,要实现这个方便非常方便,直接将中间的数和第一个数进行交换就可以了。