function result = gaborKernel2d( lambda, theta, phi, gamma, bandwidth) % GABORKERNEL2D % Version: 2012/8/17 by watkins.song % Version: 1.0 % Fills a (2N+1)*(2N+1) matrix with the values of a 2D Gabor function. % N is computed from SIGMA. % % LAMBDA - preferred wavelength (period of the cosine factor) [in pixels] % SIGMA - standard deviation of the Gaussian factor [in pixels] % THETA - preferred orientation [in radians] % PHI - phase offset [in radians] of the cosine factor % GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse) % BANDWIDTH - spatial frequency bandwidth at half response, % ******************************************************************* % % BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH, % the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored. % The actual value of the parameter whose input value is 0 is computed inside the % function from the input vallues of BANDWIDTH and the other parameter. % % pi -1 x'^2+gamma^2*y'^2 % G(x,y,theta,f) = --------------- *exp ([----{-------------------}])*cos(2*pi*f*x'+phi); % 2*sigma*sigma 2 sigma^2 % %%% x' = x*cos(theta)+y*sin(theta); %%% y' = y*cos(theta)-x*sin(theta); % % Author: watkins.song % Email: [email protected] % calculation of the ratio sigma/lambda from BANDWIDTH % according to Kruizinga and Petkov, 1999 IEEE Trans on Image Processing 8 (10) p.1396 % note that in Matlab log means ln slratio = (1/pi) * sqrt( (log(2)/2) ) * ( (2^bandwidth + 1) / (2^bandwidth - 1) ); % calcuate sigma sigma = slratio * lambda; % compute the size of the 2n+1 x 2n+1 matrix to be filled with the values of a Gabor function % this size depends on sigma and gamma if (gamma <= 1 && gamma > 0) n = ceil(2.5*sigma/gamma); else n = ceil(2.5*sigma); end % creation of two (2n+1) x (2n+1) matrices x and y that contain the x- and y-coordinates of % a square 2D-mesh; the rows of x and the columns of y are copies of the vector -n:n [x,y] = meshgrid(-n:n); % change direction of y-axis (In Matlab the vertical axis corresponds to the row index % of a matrix. If the y-coordinates run from -n to n, the lowest value (-n) comes % in the top row of the matrix ycoords and the highest value (n) in the % lowest row. This is oposite to the customary rendering of values on the y-axis: lowest value % in the bottom, highest on the top. Therefore the y-axis is inverted: y = -y; % rotate x and y % xp and yp are the coordinates of a point in a coordinate system rotated by theta. % They are the main axes of the elipse of the Gaussian factor of the Gabor function. % The wave vector of the Gabor function is along the xp axis. xp = x * cos(theta) + y * sin(theta); yp = -x * sin(theta) + y * cos(theta); % precompute coefficients gamma2=gamma*gamma, b=1/(2*sigma*sigma) and spacial frequency % f = 2*pi/lambda to prevent multiple evaluations gamma2 = gamma*gamma; b = 1 / (2*sigma*sigma); a = b / pi; f = 2*pi/lambda; % filling (2n+1) x (2n+1) matrix result with the values of a 2D Gabor function result = a*exp(-b*(xp.*xp + gamma2*(yp.*yp))) .* cos(f*xp + phi); %%%%%%%% NORMALIZATION %%%%%%%%%%%%%%%%%%%% % NORMALIZATION of positive and negative values to ensure that the integral of the kernel is 0. % This is needed when phi is different from pi/2. ppos = find(result > 0); %pointer list to indices of elements of result which are positive pneg = find(result < 0); %pointer list to indices of elements of result which are negative pos = sum(result(ppos)); % sum of the positive elements of result neg = abs(sum(result(pneg))); % abs value of sum of the negative elements of result meansum = (pos+neg)/2; if (meansum > 0) pos = pos / meansum; % normalization coefficient for negative values of result neg = neg / meansum; % normalization coefficient for psoitive values of result end result(pneg) = pos*result(pneg); result(ppos) = neg*result(ppos); end
function [Efilter, Ofilter, gb] = gaborKernel2d_evenodd( lambda, theta, kx, ky) %GABORKERNEL2D_EVENODD Summary of this function goes here % Usage: % gb = spatialgabor(im, wavelength, angle, kx, ky, showfilter) % Version: 2012/8/17 by watkins.song % Version: 1.0 % % Arguments: % im - Image to be processed. % wavelength - Wavelength in pixels of Gabor filter to construct % angle - Angle of filter in degrees. An angle of 0 gives a % filter that responds to vertical features. % kx, ky - Scale factors specifying the filter sigma relative % to the wavelength of the filter. This is done so % that the shapes of the filters are invariant to the % scale. kx controls the sigma in the x direction % which is along the filter, and hence controls the % bandwidth of the filter. ky controls the sigma % across the filter and hence controls the % orientational selectivity of the filter. A value of % 0.5 for both kx and ky is a good starting point. % % lambda = 3; % theta = 90; % kx = 0.5; % ky = 0.5; % % % Author: watkins.song % Email: [email protected] % Construct even and odd Gabor filters sigmax = lambda*kx; sigmay = lambda*ky; sze = round(3*max(sigmax,sigmay)); [x,y] = meshgrid(-sze:sze); evenFilter = exp(-(x.^2/sigmax^2 + y.^2/sigmay^2)/2).*cos(2*pi*(1/lambda)*x); % the imaginary part of the gabor filter oddFilter = exp(-(x.^2/sigmax^2 + y.^2/sigmay^2)/2).*sin(2*pi*(1/lambda)*x); evenFilter = imrotate(evenFilter, theta, 'bilinear','crop'); oddFilter = imrotate(oddFilter, theta, 'bilinear','crop'); gb = evenFilter; Efilter = evenFilter; Ofilter = oddFilter; end
function gb = gaborKernel2d_gaborfilter( lambda, theta, phi, gamma, bw) %GABORKERNEL2D_GABORFILTER Summary of this function goes here % Version: 2012/8/17 by watkins.song % Version: 1.0 % % LAMBDA - preferred wavelength (period of the cosine factor) [in pixels] % SIGMA - standard deviation of the Gaussian factor [in pixels] % THETA - preferred orientation [in radians] % PHI - phase offset [in radians] of the cosine factor % GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse) % BANDWIDTH - spatial frequency bandwidth at half response, % ******************************************************************* % % BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH, % the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored. % The actual value of the parameter whose input value is 0 is computed inside the % function from the input vallues of BANDWIDTH and the other % parameter. % -1 x'^2 + y'^2 %%% G(x,y,theta,f) = exp ([----{-----------------})*cos(2*pi*f*x'+phi); % 2 sigma*sigma %%% x' = x*cos(theta)+y*sin(theta); %%% y' = y*cos(theta)-x*sin(theta); % % Author: watkins.song % Email: [email protected] % bw = bandwidth, (1) % gamma = aspect ratio, (0.5) % psi = phase shift, (0) % lambda= wave length, (>=2) % theta = angle in rad, [0 pi) sigma = lambda/pi*sqrt(log(2)/2)*(2^bw+1)/(2^bw-1); sigma_x = sigma; sigma_y = sigma/gamma; sz=fix(8*max(sigma_y,sigma_x)); if mod(sz,2)==0 sz=sz+1; end % alternatively, use a fixed size % sz = 60; [x y]=meshgrid(-fix(sz/2):fix(sz/2),fix(sz/2):-1:fix(-sz/2)); % x (right +) % y (up +) % Rotation x_theta = x*cos(theta)+y*sin(theta); y_theta = -x*sin(theta)+y*cos(theta); gb=exp(-0.5*(x_theta.^2/sigma_x^2+y_theta.^2/sigma_y^2)).*cos(2*pi/lambda*x_theta+phi); end
function gb = gaborKernel2d_wiki( lambda, theta, phi, gamma, bandwidth) % GABORKERNEL2D_WIKI 改写的来自wiki的gabor函数 % Version: 2012/8/17 by watkins.song % Version: 1.0 % % LAMBDA - preferred wavelength (period of the cosine factor) [in pixels] % SIGMA - standard deviation of the Gaussian factor [in pixels] % THETA - preferred orientation [in radians] % PHI - phase offset [in radians] of the cosine factor % GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse) % BANDWIDTH - spatial frequency bandwidth at half response, % ******************************************************************* % % BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH, % the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored. % The actual value of the parameter whose input value is 0 is computed inside the % function from the input vallues of BANDWIDTH and the other % parameter. % -1 x'^2 + y'^2 %%% G(x,y,theta,f) = exp ([----{-----------------})*cos(2*pi*f*x'+phi); % 2 sigma*sigma %%% x' = x*cos(theta)+y*sin(theta); %%% y' = y*cos(theta)-x*sin(theta); % % Author: watkins.song % Email: [email protected] % calculation of the ratio sigma/lambda from BANDWIDTH % according to Kruizinga and Petkov, 1999 IEEE Trans on Image Processing 8 (10) p.1396 % note that in Matlab log means ln slratio = (1/pi) * sqrt( (log(2)/2) ) * ( (2^bandwidth + 1) / (2^bandwidth - 1) ); % calcuate sigma sigma = slratio * lambda; sigma_x = sigma; sigma_y = sigma/gamma; % Bounding box nstds = 4; xmax = max(abs(nstds*sigma_x*cos(theta)),abs(nstds*sigma_y*sin(theta))); xmax = ceil(max(1,xmax)); ymax = max(abs(nstds*sigma_x*sin(theta)),abs(nstds*sigma_y*cos(theta))); ymax = ceil(max(1,ymax)); xmin = -xmax; ymin = -ymax; [x,y] = meshgrid(xmin:xmax,ymin:ymax); % Rotation x_theta = x*cos(theta) + y*sin(theta); y_theta = -x*sin(theta) + y*cos(theta); % Gabor Function gb= exp(-.5*(x_theta.^2/sigma_x^2+y_theta.^2/sigma_y^2)).*cos(2*pi/lambda*x_theta+phi); end
function [GaborReal, GaborImg] = gaborKernel_matlab( GaborH, GaborW, U, V, sigma) %GABORKERNEL_MATLAB generate very beautiful gabor filter % Version: 2012/8/17 by watkins.song % Version: 1.0 % 用以生成 Gabor % GaborReal: 核实部 GaborImg: 虚部 % GaborH,GaborW: Gabor窗口 高宽. % U,V: 方向 大小 % ||Ku,v||^2 % G(Z) = ---------------- exp(-||Ku,v||^2 * Z^2)/(2*sigma*sigma)(exp(i*Ku,v*Z)-exp(-sigma*sigma/2)) % sigma*sigma % % 利用另外一个gabor函数来生成gabor filter, 通过u,v表示方向和尺度. % 这里的滤波器模板的大小是不变的,变化的只有滤波器的波长和方向 % v: 代表波长 % u: 代表方向 % 缺省输入前2个参数,后面参数 Kmax=2.5*pi/2, f=sqrt(2), sigma=1.5*pi; % GaborH, GaborW, Gabor模板大小 % U,方向因子{0,1,2,3,4,5,6,7} % V,大小因子{0,1,2,3,4} % Author: watkins.song % Email: [email protected] HarfH = fix(GaborH/2); HarfW = fix(GaborW/2); Qu = pi*U/8; sqsigma = sigma*sigma; Kv = 2.5*pi*(2^(-(V+2)/2)); %Kv = Kmax/(f^V); postmean = exp(-sqsigma/2); for j = -HarfH : HarfH for i = -HarfW : HarfW tmp1 = exp(-(Kv*Kv*(j*j+i*i)/(2*sqsigma))); tmp2 = cos(Kv*cos(Qu)*i+Kv*sin(Qu)*j) - postmean; %tmp3 = sin(Kv*cos(Qu)*i+Kv*sin(Qu)*j) - exp(-sqsigma/2); tmp3 = sin(Kv*cos(Qu)*i+Kv*sin(Qu)*j); GaborReal(j+HarfH+1, i+HarfW+1) = Kv*Kv*tmp1*tmp2/sqsigma; GaborImg(j+HarfH+1, i+HarfW+1) = Kv*Kv*tmp1*tmp3/sqsigma; end end end
最后调用方式都一样:
% 测试用程序 theta = [0 pi/8 2*pi/8 3*pi/8 4*pi/8 5*pi/8 6*pi/8 7*pi/8]; lambda = [4 6 8 10 12]; phi = 0; gamma = 1; bw = 0.5; % 计算每个滤波器 figure; for i = 1:5 for j = 1:8 gaborFilter=gaborKernel2d(lambda(i), theta(j), phi, gamma, bw); % 查看每一个滤波器 %figure; %imshow(real(gaborFilter),[]); % 将所有的滤波器放到一张图像中查看,查看滤波器组 subplot(5,8,(i-1)*8+j); imshow(real(gaborFilter),[]); end end