转载自:http://blog.csdn.net/yj4231/article/details/7746643
本文将介绍SPI子系统。内核版本为2.6.30。如有错误欢迎指正。
预备知识要求:1.SPI总线
2. platfrom平台
3. sysfs子系统
4. 阅读过LDD3第3,5,6,7,9,10,11章的内容。
NOTE:如果没有看过LDD3的相关内容,直接看内核源码将非常吃力!!!
PC主机:Ubuntu 和 redhat 9.0
目标板:TQ2440开发板 cpu:s3c2440 linux内核:2.6.30
0.引言
本系列文章对Linux设备模型中的SPI子系统进行讲解。SPI子系统的讲解将分为4个部分。
第一部分,即本篇文章,将对SPI子系统整体进行描述,同时给出SPI的相关数据结构,最后描述SPI总线的注册。
第二部分,该文将对SPI的主控制器(master)驱动进行描述。 基于S3C2440的嵌入式Linux驱动——SPI子系统解读(二)
第三部分,该文将对SPI设备驱动,也称protocol 驱动,进行讲解。基于S3C2440的嵌入式Linux驱动——SPI子系统解读(三)
第四部分,通过SPI设备驱动留给用户层的API,我们将从上到下描述数据是如何通过SPI的protocol 驱动,由bitbang中转,最后由master驱动将数据传输出去。
基于S3C2440的嵌入式Linux驱动——SPI子系统解读(四)
1.SPI子系统综述
SPI子系统从上到下分为:spi设备驱动层,核心层和master驱动层。其中master驱动抽象出spi控制器的相关操作,而spi设备驱动层抽象出了用户空间API。
platform_device结构中描述了SPI控制器的相关资源,同时在板级信息中将会添加spi设备的相关信息。master驱动将以platform_driver形式体现出来,也就是说
在主控制器(master)和主控制器驱动将挂载到platform总线上。platform_driver的probe函数中将注册spi_master,同时将会获取在板级信息中添加的spi设备,将该
信息转换成spi_device,然后注册spi_device到spi总线上。spi_driver结构用于描述spi设备驱动,也将挂载到spi总线上。连同spi_driver一起注册的是字符设备,该
字符设备将提供5个API给用户空间。通过API,用户空间可以执行半双工读、半双工写和全双工读写。
2. SPI的相关数据结构
这里将介绍内核所用到的关键数据结构,还有些结构将在用到时加以说明。
2.1 spi_master
该结构用于描述SOC的SPI控制器,S3C2440共有两个SPI控制器。
/** * struct spi_master - interface to SPI master controller * @dev: device interface to this driver * @bus_num: board-specific (and often SOC-specific) identifier for a * given SPI controller. * @num_chipselect: chipselects are used to distinguish individual * SPI slaves, and are numbered from zero to num_chipselects. * each slave has a chipselect signal, but it's common that not * every chipselect is connected to a slave. * @dma_alignment: SPI controller constraint on DMA buffers alignment. * @setup: updates the device mode and clocking records used by a * device's SPI controller; protocol code may call this. This * must fail if an unrecognized or unsupported mode is requested. * It's always safe to call this unless transfers are pending on * the device whose settings are being modified. * @transfer: adds a message to the controller's transfer queue. * @cleanup: frees controller-specific state * * Each SPI master controller can communicate with one or more @spi_device * children. These make a small bus, sharing MOSI, MISO and SCK signals * but not chip select signals. Each device may be configured to use a * different clock rate, since those shared signals are ignored unless * the chip is selected. * * The driver for an SPI controller manages access to those devices through * a queue of spi_message transactions, copying data between CPU memory and * an SPI slave device. For each such message it queues, it calls the * message's completion function when the transaction completes. */ struct spi_master { struct device dev; /* other than negative (== assign one dynamically), bus_num is fully * board-specific. usually that simplifies to being SOC-specific. * example: one SOC has three SPI controllers, numbered 0..2, * and one board's schematics might show it using SPI-2. software * would normally use bus_num=2 for that controller. */ s16 bus_num; /* chipselects will be integral to many controllers; some others * might use board-specific GPIOs. */ u16 num_chipselect; //该值不能为0,否则会注册失败 /* some SPI controllers pose alignment requirements on DMAable * buffers; let protocol drivers know about these requirements. */ u16 dma_alignment; /* Setup mode and clock, etc (spi driver may call many times). * * IMPORTANT: this may be called when transfers to another * device are active. DO NOT UPDATE SHARED REGISTERS in ways * which could break those transfers. */ int (*setup)(struct spi_device *spi); /* bidirectional bulk transfers * * + The transfer() method may not sleep; its main role is * just to add the message to the queue. * + For now there's no remove-from-queue operation, or * any other request management * + To a given spi_device, message queueing is pure fifo * * + The master's main job is to process its message queue, * selecting a chip then transferring data * + If there are multiple spi_device children, the i/o queue * arbitration algorithm is unspecified (round robin, fifo, * priority, reservations, preemption, etc) * * + Chipselect stays active during the entire message * (unless modified by spi_transfer.cs_change != 0). * + The message transfers use clock and SPI mode parameters * previously established by setup() for this device */ int (*transfer)(struct spi_device *spi, struct spi_message *mesg); /* called on release() to free memory provided by spi_master */ void (*cleanup)(struct spi_device *spi); };2.2 spi_device
该结构用于描述SPI设备,也就是从设备的相关信息。
NOTE:SPI子系统只支持主模式,也就是说S3C2440的SPI只能工作在master模式,外围设备只能为slave模式。
/** * struct spi_device - Master side proxy for an SPI slave device * @dev: Driver model representation of the device. * @master: SPI controller used with the device. * @max_speed_hz: Maximum clock rate to be used with this chip * (on this board); may be changed by the device's driver. * The spi_transfer.speed_hz can override this for each transfer. * @chip_select: Chipselect, distinguishing chips handled by @master. * @mode: The spi mode defines how data is clocked out and in. * This may be changed by the device's driver. * The "active low" default for chipselect mode can be overridden * (by specifying SPI_CS_HIGH) as can the "MSB first" default for * each word in a transfer (by specifying SPI_LSB_FIRST). * @bits_per_word: Data transfers involve one or more words; word sizes * like eight or 12 bits are common. In-memory wordsizes are * powers of two bytes (e.g. 20 bit samples use 32 bits). * This may be changed by the device's driver, or left at the * default (0) indicating protocol words are eight bit bytes. * The spi_transfer.bits_per_word can override this for each transfer. * @irq: Negative, or the number passed to request_irq() to receive * interrupts from this device. * @controller_state: Controller's runtime state * @controller_data: Board-specific definitions for controller, such as * FIFO initialization parameters; from board_info.controller_data * @modalias: Name of the driver to use with this device, or an alias * for that name. This appears in the sysfs "modalias" attribute * for driver coldplugging, and in uevents used for hotplugging * * A @spi_device is used to interchange data between an SPI slave * (usually a discrete chip) and CPU memory. * * In @dev, the platform_data is used to hold information about this * device that's meaningful to the device's protocol driver, but not * to its controller. One example might be an identifier for a chip * variant with slightly different functionality; another might be * information about how this particular board wires the chip's pins. */ struct spi_device { struct device dev; struct spi_master *master; u32 max_speed_hz; u8 chip_select; u8 mode; #define SPI_CPHA 0x01 /* clock phase */ #define SPI_CPOL 0x02 /* clock polarity */ #define SPI_MODE_0 (0|0) /* (original MicroWire) */ #define SPI_MODE_1 (0|SPI_CPHA) #define SPI_MODE_2 (SPI_CPOL|0) #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA) #define SPI_CS_HIGH 0x04 /* chipselect active high? */ #define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */ #define SPI_3WIRE 0x10 /* SI/SO signals shared */ #define SPI_LOOP 0x20 /* loopback mode */ u8 bits_per_word; int irq; void *controller_state; void *controller_data; char modalias[32]; /* * likely need more hooks for more protocol options affecting how * the controller talks to each chip, like: * - memory packing (12 bit samples into low bits, others zeroed) * - priority * - drop chipselect after each word * - chipselect delays * - ... */ };2.3 spi_board_info
该结构也是对从设备的描述,只不过它是板级信息,最终该结构的所有信息将复制给spi_device。
* INTERFACE between board init code and SPI infrastructure. * * No SPI driver ever sees these SPI device table segments, but * it's how the SPI core (or adapters that get hotplugged) grows * the driver model tree. * * As a rule, SPI devices can't be probed. Instead, board init code * provides a table listing the devices which are present, with enough * information to bind and set up the device's driver. There's basic * support for nonstatic configurations too; enough to handle adding * parport adapters, or microcontrollers acting as USB-to-SPI bridges. */ /** * struct spi_board_info - board-specific template for a SPI device * @modalias: Initializes spi_device.modalias; identifies the driver. * @platform_data: Initializes spi_device.platform_data; the particular * data stored there is driver-specific. * @controller_data: Initializes spi_device.controller_data; some * controllers need hints about hardware setup, e.g. for DMA. * @irq: Initializes spi_device.irq; depends on how the board is wired. * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits * from the chip datasheet and board-specific signal quality issues. * @bus_num: Identifies which spi_master parents the spi_device; unused * by spi_new_device(), and otherwise depends on board wiring. * @chip_select: Initializes spi_device.chip_select; depends on how * the board is wired. * @mode: Initializes spi_device.mode; based on the chip datasheet, board * wiring (some devices support both 3WIRE and standard modes), and * possibly presence of an inverter in the chipselect path. * * When adding new SPI devices to the device tree, these structures serve * as a partial device template. They hold information which can't always * be determined by drivers. Information that probe() can establish (such * as the default transfer wordsize) is not included here. * * These structures are used in two places. Their primary role is to * be stored in tables of board-specific device descriptors, which are * declared early in board initialization and then used (much later) to * populate a controller's device tree after the that controller's driver * initializes. A secondary (and atypical) role is as a parameter to * spi_new_device() call, which happens after those controller drivers * are active in some dynamic board configuration models. */ struct spi_board_info { /* the device name and module name are coupled, like platform_bus; * "modalias" is normally the driver name. * * platform_data goes to spi_device.dev.platform_data, * controller_data goes to spi_device.controller_data, * irq is copied too */ char modalias[32]; const void *platform_data; void *controller_data; int irq; /* slower signaling on noisy or low voltage boards */ u32 max_speed_hz; /* bus_num is board specific and matches the bus_num of some * spi_master that will probably be registered later. * * chip_select reflects how this chip is wired to that master; * it's less than num_chipselect. */ u16 bus_num; u16 chip_select; /* mode becomes spi_device.mode, and is essential for chips * where the default of SPI_CS_HIGH = 0 is wrong. */ u8 mode; /* ... may need additional spi_device chip config data here. * avoid stuff protocol drivers can set; but include stuff * needed to behave without being bound to a driver: * - quirks like clock rate mattering when not selected */ };
2.4 spi_driver
该结构用于描述SPI设备驱动。驱动核心将根据driver.name和spi_board_info 的modalias进行匹配,如过modalia和name相等,则绑定驱动程序和SPI设备。
/** * struct spi_driver - Host side "protocol" driver * @probe: Binds this driver to the spi device. Drivers can verify * that the device is actually present, and may need to configure * characteristics (such as bits_per_word) which weren't needed for * the initial configuration done during system setup. * @remove: Unbinds this driver from the spi device * @shutdown: Standard shutdown callback used during system state * transitions such as powerdown/halt and kexec * @suspend: Standard suspend callback used during system state transitions * @resume: Standard resume callback used during system state transitions * @driver: SPI device drivers should initialize the name and owner * field of this structure. * * This represents the kind of device driver that uses SPI messages to * interact with the hardware at the other end of a SPI link. It's called * a "protocol" driver because it works through messages rather than talking * directly to SPI hardware (which is what the underlying SPI controller * driver does to pass those messages). These protocols are defined in the * specification for the device(s) supported by the driver. * * As a rule, those device protocols represent the lowest level interface * supported by a driver, and it will support upper level interfaces too. * Examples of such upper levels include frameworks like MTD, networking, * MMC, RTC, filesystem character device nodes, and hardware monitoring. */ struct spi_driver { int (*probe)(struct spi_device *spi); int (*remove)(struct spi_device *spi); void (*shutdown)(struct spi_device *spi); int (*suspend)(struct spi_device *spi, pm_message_t mesg); int (*resume)(struct spi_device *spi); struct device_driver driver; };2.5 spi_transfer
该数据结构是对一次完整的数据传输的描述。
/** * I/O INTERFACE between SPI controller and protocol drivers * * Protocol drivers use a queue of spi_messages, each transferring data * between the controller and memory buffers. * * The spi_messages themselves consist of a series of read+write transfer * segments. Those segments always read the same number of bits as they * write; but one or the other is easily ignored by passing a null buffer * pointer. (This is unlike most types of I/O API, because SPI hardware * is full duplex.) * * NOTE: Allocation of spi_transfer and spi_message memory is entirely * up to the protocol driver, which guarantees the integrity of both (as * well as the data buffers) for as long as the message is queued. */ /** * struct spi_transfer - a read/write buffer pair * @tx_buf: data to be written (dma-safe memory), or NULL * @rx_buf: data to be read (dma-safe memory), or NULL * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped * @len: size of rx and tx buffers (in bytes) * @speed_hz: Select a speed other than the device default for this * transfer. If 0 the default (from @spi_device) is used. * @bits_per_word: select a bits_per_word other than the device default * for this transfer. If 0 the default (from @spi_device) is used. * @cs_change: affects chipselect after this transfer completes * @delay_usecs: microseconds to delay after this transfer before * (optionally) changing the chipselect status, then starting * the next transfer or completing this @spi_message. * @transfer_list: transfers are sequenced through @spi_message.transfers * * SPI transfers always write the same number of bytes as they read. * Protocol drivers should always provide @rx_buf and/or @tx_buf. * In some cases, they may also want to provide DMA addresses for * the data being transferred; that may reduce overhead, when the * underlying driver uses dma. * * If the transmit buffer is null, zeroes will be shifted out * while filling @rx_buf. If the receive buffer is null, the data * shifted in will be discarded. Only "len" bytes shift out (or in). * It's an error to try to shift out a partial word. (For example, by * shifting out three bytes with word size of sixteen or twenty bits; * the former uses two bytes per word, the latter uses four bytes.) * * In-memory data values are always in native CPU byte order, translated * from the wire byte order (big-endian except with SPI_LSB_FIRST). So * for example when bits_per_word is sixteen, buffers are 2N bytes long * (@len = 2N) and hold N sixteen bit words in CPU byte order. * * When the word size of the SPI transfer is not a power-of-two multiple * of eight bits, those in-memory words include extra bits. In-memory * words are always seen by protocol drivers as right-justified, so the * undefined (rx) or unused (tx) bits are always the most significant bits. * * All SPI transfers start with the relevant chipselect active. Normally * it stays selected until after the last transfer in a message. Drivers * can affect the chipselect signal using cs_change. * * (i) If the transfer isn't the last one in the message, this flag is * used to make the chipselect briefly go inactive in the middle of the * message. Toggling chipselect in this way may be needed to terminate * a chip command, letting a single spi_message perform all of group of * chip transactions together. * * (ii) When the transfer is the last one in the message, the chip may * stay selected until the next transfer. On multi-device SPI busses * with nothing blocking messages going to other devices, this is just * a performance hint; starting a message to another device deselects * this one. But in other cases, this can be used to ensure correctness. * Some devices need protocol transactions to be built from a series of * spi_message submissions, where the content of one message is determined * by the results of previous messages and where the whole transaction * ends when the chipselect goes intactive. * * The code that submits an spi_message (and its spi_transfers) * to the lower layers is responsible for managing its memory. * Zero-initialize every field you don't set up explicitly, to * insulate against future API updates. After you submit a message * and its transfers, ignore them until its completion callback. */ struct spi_transfer { /* it's ok if tx_buf == rx_buf (right?) * for MicroWire, one buffer must be null * buffers must work with dma_*map_single() calls, unless * spi_message.is_dma_mapped reports a pre-existing mapping */ const void *tx_buf; void *rx_buf; unsigned len; dma_addr_t tx_dma; dma_addr_t rx_dma; unsigned cs_change:1; u8 bits_per_word; u16 delay_usecs; u32 speed_hz; struct list_head transfer_list; };
2.6 spi_message
该结构就是对多个spi_transfer的封装。
/** * struct spi_message - one multi-segment SPI transaction * @transfers: list of transfer segments in this transaction * @spi: SPI device to which the transaction is queued * @is_dma_mapped: if true, the caller provided both dma and cpu virtual * addresses for each transfer buffer * @complete: called to report transaction completions * @context: the argument to complete() when it's called * @actual_length: the total number of bytes that were transferred in all * successful segments * @status: zero for success, else negative errno * @queue: for use by whichever driver currently owns the message * @state: for use by whichever driver currently owns the message * * A @spi_message is used to execute an atomic sequence of data transfers, * each represented by a struct spi_transfer. The sequence is "atomic" * in the sense that no other spi_message may use that SPI bus until that * sequence completes. On some systems, many such sequences can execute as * as single programmed DMA transfer. On all systems, these messages are * queued, and might complete after transactions to other devices. Messages * sent to a given spi_device are alway executed in FIFO order. * * The code that submits an spi_message (and its spi_transfers) * to the lower layers is responsible for managing its memory. * Zero-initialize every field you don't set up explicitly, to * insulate against future API updates. After you submit a message * and its transfers, ignore them until its completion callback. */ struct spi_message { struct list_head transfers; struct spi_device *spi; unsigned is_dma_mapped:1; /* REVISIT: we might want a flag affecting the behavior of the * last transfer ... allowing things like "read 16 bit length L" * immediately followed by "read L bytes". Basically imposing * a specific message scheduling algorithm. * * Some controller drivers (message-at-a-time queue processing) * could provide that as their default scheduling algorithm. But * others (with multi-message pipelines) could need a flag to * tell them about such special cases. */ /* completion is reported through a callback */ void (*complete)(void *context); void *context; unsigned actual_length; int status; /* for optional use by whatever driver currently owns the * spi_message ... between calls to spi_async and then later * complete(), that's the spi_master controller driver. */ struct list_head queue; void *state; };2.7 spi_bitbang
struct spi_bitbang { struct workqueue_struct *workqueue; struct work_struct work; spinlock_t lock; struct list_head queue; u8 busy; u8 use_dma; u8 flags; /* extra spi->mode support */ struct spi_master *master; /* setup_transfer() changes clock and/or wordsize to match settings * for this transfer; zeroes restore defaults from spi_device. */ int (*setup_transfer)(struct spi_device *spi, struct spi_transfer *t); void (*chipselect)(struct spi_device *spi, int is_on); #define BITBANG_CS_ACTIVE 1 /* normally nCS, active low */ #define BITBANG_CS_INACTIVE 0 /* txrx_bufs() may handle dma mapping for transfers that don't * already have one (transfer.{tx,rx}_dma is zero), or use PIO */ int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t); /* txrx_word[SPI_MODE_*]() just looks like a shift register */ u32 (*txrx_word[4])(struct spi_device *spi, unsigned nsecs, u32 word, u8 bits); };3. 注册SPI总线
下列函数位于drivers/spi/spi.c中
struct bus_type spi_bus_type = { .name = "spi", .dev_attrs = spi_dev_attrs, .match = spi_match_device, .uevent = spi_uevent, .suspend = spi_suspend, .resume = spi_resume, }; EXPORT_SYMBOL_GPL(spi_bus_type); static struct class spi_master_class = { .name = "spi_master", .owner = THIS_MODULE, .dev_release = spi_master_release, }; /* portable code must never pass more than 32 bytes */ #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) static u8 *buf; static int __init spi_init(void) { int status; buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); if (!buf) { status = -ENOMEM; goto err0; } status = bus_register(&spi_bus_type); /*注册SPI总线*/ if (status < 0) goto err1; status = class_register(&spi_master_class);/*注册SPI类*/ if (status < 0) goto err2; return 0; err2: bus_unregister(&spi_bus_type); err1: kfree(buf); buf = NULL; err0: return status; } /* board_info is normally registered in arch_initcall(), * but even essential drivers wait till later * * REVISIT only boardinfo really needs static linking. the rest (device and * driver registration) _could_ be dynamically linked (modular) ... costs * include needing to have boardinfo data structures be much more public. */ postcore_initcall(spi_init);
spi_init函数注册SPI总线以及SPI类到内核中。该函数在内核初始化的postcore_initcall阶段被调用。
顺便看看下总线的匹配函数。
下列函数位于drivers/spi/spi.c中。
/* modalias support makes "modprobe $MODALIAS" new-style hotplug work, * and the sysfs version makes coldplug work too. */ static int spi_match_device(struct device *dev, struct device_driver *drv) { const struct spi_device *spi = to_spi_device(dev); return strcmp(spi->modalias, drv->name) == 0; }从这里我们可以看出,SPI设备和驱动的匹配是通过spi的modalias字段和driver的name字段,这两个字段相等则绑定设备和驱动 。