(一)在Ubuntu上为Android系统编写Linux内核驱动程序

在智能手机时代,每个品牌的手机都有自己的个性特点。正是依靠这种与众不同的个性来吸引用户,营造品牌凝聚力和用户忠城度,典型的代表非iphone莫属了。据统计,截止2011年5月,AppStore的应用软件数量达381062个,位居第一,而Android Market的应用软件数量达294738,紧随AppStore后面,并有望在8月份越过AppStore。随着Android系统逐步扩大市场占有率,终端设备的多样性亟需更多的移动开发人员的参与。据业内统计,Android研发人才缺口至少30万。目前,对Android人才需求一类是偏向硬件驱动的Android人才需求,一类是偏向软件应用的Android人才需求。总的来说,对有志于从事Android硬件驱动的开发工程师来说,现在是一个大展拳脚的机会。那么,就让我们一起来看看如何为Android系统编写内核驱动程序吧。

        这里,我们不会为真实的硬件设备编写内核驱动程序。为了方便描述为Android系统编写内核驱动程序的过程,我们使用一个虚拟的硬件设备,这个设备只有一个4字节的寄存器,它可读可写。想起我们第一次学习程序语言时,都喜欢用“Hello, World”作为例子,这里,我们就把这个虚拟的设备命名为“hello”,而这个内核驱动程序也命名为hello驱动程序。其实,Android内核驱动程序和一般Linux内核驱动程序的编写方法是一样的,都是以Linux模块的形式实现的,具体可参考前面Android学习启动篇一文中提到的Linux Device Drivers一书。不过,这里我们还是从Android系统的角度来描述Android内核驱动程序的编写和编译过程。
       一. 参照前面两篇文章在Ubuntu上下载、编译和安装Android最新源代码和在Ubuntu上下载、编译和安装Android最新内核源代码(Linux Kernel)准备好Android内核驱动程序开发环境。
       二. 进入到kernel/common/drivers目录,新建hello目录:

       USER-NAME@MACHINE-NAME:~/Android$ cd kernel/common/drivers
       USER-NAME@MACHINE-NAME:~/Android/kernel/goldfish/drivers$ mkdir hello




       三. 在hello目录中增加hello.h文件:


#ifndef _HELLO_ANDROID_H_
#define _HELLO_ANDROID_H_

#include <linux/cdev.h>
#include <linux/semaphore.h>

#define HELLO_DEVICE_NODE_NAME "hello"
#define HELLO_DEVICE_FILE_NAME "hello"
#define HELLO_DEVICE_PROC_NAME "hello"
#define HELLO_DEVICE_CLASS_NAME "hello"

struct hello_android_dev {
	int val;
	struct semaphore sem;
	struct cdev dev;
};

#endif

这个头文件定义了一些字符串常量宏,在后面我们要用到。此外,还定义了一个字符设备结构体hello_android_dev,这个就是我们虚拟的硬件设备了,val成员变量就代表设备里面的寄存器,它的类型为int,sem成员变量是一个信号量,是用同步访问寄存器val的,dev成员变量是一个内嵌的字符设备,这个Linux驱动程序自定义字符设备结构体的标准方法。  


四.在hello目录中增加hello.c文件,这是驱动程序的实现部分。

驱动程序的功能主要是向上层提供访问设备的寄存器的值,包括读和写。这里,提供了三种访问设备寄存器的方法,一是通过proc文件系统来访问,二是通过传统的设备文件的方法来访问,三是通过devfs文件系统来访问。下面分段描述该驱动程序的实现。  
首先是包含必要的头文件和定义三种访问设备的方法:  

#if 1 //baiduman 首先是包含必要的头文件和定义三种访问设备的方法
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/device.h>
#include <asm/uaccess.h>
#include "hello.h"
#if 1//
#define pr_debug(x...) printk("[hello.c::]:: "x)
#define ur_debug(x...) printk(x)
//pr_debug("wang :: %s\n", __func__);
#else
#define pr_debug(x...)	 do {} while(0)
#define ur_debug(x...)	do {} while(0)
#endif
/*主设备和从设备号变量*/
static int hello_major = 0;
static int hello_minor = 0;

/*设备类别和设备变量*/
static struct class* hello_class = NULL;
static struct hello_android_dev* hello_dev = NULL;

/*传统的设备文件操作方法*/
static int hello_open(struct inode* inode, struct file* filp);
static int hello_release(struct inode* inode, struct file* filp);
static ssize_t hello_read(struct file* filp, char __user *buf, size_t count, loff_t* f_pos);
static ssize_t hello_write(struct file* filp, const char __user *buf, size_t count, loff_t* f_pos);

/*设备文件操作方法表*/
static struct file_operations hello_fops = {
	.owner = THIS_MODULE,
	.open = hello_open,
	.release = hello_release,
	.read = hello_read,
	.write = hello_write, 
};
/*访问设置属性方法*/
static ssize_t hello_val_show(struct device* dev, struct device_attribute* attr,  char* buf);
static ssize_t hello_val_store(struct device* dev, struct device_attribute* attr, const char* buf, size_t count);

/*定义设备属性*/
static DEVICE_ATTR(val, S_IRUGO | S_IWUSR, hello_val_show, hello_val_store);
#endif 
#if 1//baiduman 定义传统的设备文件访问方法,主要是定义hello_open、hello_release、hello_read和hello_write这四个打开、释放、读和写设备文件的方法

/*打开设备方法*/
static int hello_open(struct inode* inode, struct file* filp) {
	struct hello_android_dev* dev;        
	
	/*将自定义设备结构体保存在文件指针的私有数据域中,以便访问设备时拿来用*/
	dev = container_of(inode->i_cdev, struct hello_android_dev, dev);
	filp->private_data = dev;
	
	return 0;
}

/*设备文件释放时调用,空实现*/
static int hello_release(struct inode* inode, struct file* filp) {
	return 0;
}

/*读取设备的寄存器val的值*/
static ssize_t hello_read(struct file* filp, char __user *buf, size_t count, loff_t* f_pos) {
	ssize_t err = 0;
	struct hello_android_dev* dev = filp->private_data;        

	/*同步访问*/
	if(down_interruptible(&(dev->sem))) {
		return -ERESTARTSYS;
	}

	if(count < sizeof(dev->val)) {
		goto out;
	}        

	/*将寄存器val的值拷贝到用户提供的缓冲区*/
	if(copy_to_user(buf, &(dev->val), sizeof(dev->val))) {
		err = -EFAULT;
		goto out;
	}

	err = sizeof(dev->val);

out:
	up(&(dev->sem));
	return err;
}


#endif
#if 1//baiduman 定义通过devfs文件系统访问方法

/*写设备的寄存器值val*/
static ssize_t hello_write(struct file* filp, const char __user *buf, size_t count, loff_t* f_pos) {
	struct hello_android_dev* dev = filp->private_data;
	ssize_t err = 0;        

	/*同步访问*/
	if(down_interruptible(&(dev->sem))) {
		return -ERESTARTSYS;        
	}        

	if(count != sizeof(dev->val)) {
		goto out;        
	}        

	/*将用户提供的缓冲区的值写到设备寄存器去*/
	if(copy_from_user(&(dev->val), buf, count)) {
		err = -EFAULT;
		goto out;
	}
	err = sizeof(dev->val);

out:
	up(&(dev->sem));
	return err;
}

/*读取寄存器val的值到缓冲区buf中,内部使用*/
static ssize_t __hello_get_val(struct hello_android_dev* dev, char* buf) 
{
      pr_debug("baiduman :: %s\n", __func__);
	int val = 0;        
	/*同步访问*/
	if(down_interruptible(&(dev->sem))) {                
		return -ERESTARTSYS;        
	}        

	val = dev->val;        
	up(&(dev->sem));        

	return snprintf(buf, PAGE_SIZE, "%d\n", val);
}

/*把缓冲区buf的值写到设备寄存器val中去,内部使用*/
static ssize_t __hello_set_val(struct hello_android_dev* dev, const char* buf, size_t count)
{
     pr_debug("baiduman :: %s\n", __func__);
	int val = 0;        

	/*将字符串转换成数字*/        
	val = simple_strtol(buf, NULL, 10);        

	/*同步访问*/        
	if(down_interruptible(&(dev->sem))) {                
		return -ERESTARTSYS;        
	}        

	dev->val = val;        
	up(&(dev->sem));

	return count;
}

/*读取设备属性val*/
static ssize_t hello_val_show(struct device* dev, struct device_attribute* attr, char* buf) 
{
	struct hello_android_dev* hdev = (struct hello_android_dev*)dev_get_drvdata(dev);        
	return __hello_get_val(hdev, buf);
}

/*写设备属性val*/
static ssize_t hello_val_store(struct device* dev, struct device_attribute* attr, const char* buf, size_t count)
{ 
	struct hello_android_dev* hdev = (struct hello_android_dev*)dev_get_drvdata(dev);  
	return __hello_set_val(hdev, buf, count);
}


/* proc baiduman*/
/*读取设备寄存器val的值,保存在page缓冲区中*/
static ssize_t hello_proc_read(char* page, char** start, off_t off, int count, int* eof, void* data) 
{
     pr_debug("baiduman :: %s\n", __func__);
	if(off > 0) {
		*eof = 1;
		return 0;
	}

	return __hello_get_val(hello_dev, page);
}

/*把缓冲区的值buff保存到设备寄存器val中去*/
static ssize_t hello_proc_write(struct file* filp, const char __user *buff, unsigned long len, void* data) 
{
     pr_debug("baiduman :: %s\n", __func__);
	int err = 0;
	char* page = NULL;

	if(len > PAGE_SIZE) {
		printk(KERN_ALERT"The buff is too large: %lu.\n", len);
		return -EFAULT;
	}

	page = (char*)__get_free_page(GFP_KERNEL);
	if(!page) {                
		printk(KERN_ALERT"Failed to alloc page.\n");
		return -ENOMEM;
	}        

	/*先把用户提供的缓冲区值拷贝到内核缓冲区中去*/
	if(copy_from_user(page, buff, len)) {
		printk(KERN_ALERT"Failed to copy buff from user.\n");                
		err = -EFAULT;
		goto out;
	}

	err = __hello_set_val(hello_dev, page, len);

out:
	free_page((unsigned long)page);
	return err;
}
#endif

#if 1 //baiduman 定义通过proc文件系统访问方法
/*创建/proc/hello文件*/
static void hello_create_proc(void) 
{
      pr_debug("baiduman :: %s\n", __func__);
	struct proc_dir_entry* entry;
	
	entry = create_proc_entry(HELLO_DEVICE_PROC_NAME, 0666, NULL);
	if(entry) {
		//entry->owner = THIS_MODULE;
		entry->read_proc = hello_proc_read;
		entry->write_proc = hello_proc_write;
	}
}
#if 0
extern struct proc_dir_entry proc_root;
		struct proc_dir_entry *root_entry;
		struct proc_dir_entry *entry;
		root_entry = proc_mkdir(PROC_NAME, &proc_root);
		s_proc = create_proc_entry(MODEM_SWITCH_PROC_NAME, 0666, root_entry);
		if (s_proc != NULL){
			s_proc->write_proc = modem_switch_writeproc;
			s_proc->read_proc = modem_switch_readproc;
}
#endif
/*删除/proc/hello文件*/
static void hello_remove_proc(void) {
	remove_proc_entry(HELLO_DEVICE_PROC_NAME, NULL);
}
#endif
#if 1//baiduman  定义模块加载和卸载方法,这里只要是执行设备注册和初始化操作
/*初始化设备*/
static int  __hello_setup_dev(struct hello_android_dev* dev) {
	int err;
	dev_t devno = MKDEV(hello_major, hello_minor);

	memset(dev, 0, sizeof(struct hello_android_dev));

	cdev_init(&(dev->dev), &hello_fops);
	dev->dev.owner = THIS_MODULE;
	dev->dev.ops = &hello_fops;        

	/*注册字符设备*/
	err = cdev_add(&(dev->dev),devno, 1);
	if(err) {
		return err;
	}        

	/*初始化信号量和寄存器val的值*/
	init_MUTEX(&(dev->sem));
	dev->val = 0;

	return 0;
}

/*模块加载方法*/
static int __init hello_init(void){ 
	int err = -1;
	dev_t dev = 0;
	struct device* temp = NULL;

	printk(KERN_ALERT"Initializing hello device.\n");        

	/*动态分配主设备和从设备号*/
	err = alloc_chrdev_region(&dev, 0, 1, HELLO_DEVICE_NODE_NAME);
	if(err < 0) {
		printk(KERN_ALERT"Failed to alloc char dev region.\n");
		goto fail;
	}

	hello_major = MAJOR(dev);
	hello_minor = MINOR(dev);        

	/*分配helo设备结构体变量*/
	hello_dev = kmalloc(sizeof(struct hello_android_dev), GFP_KERNEL);
	if(!hello_dev) {
		err = -ENOMEM;
		printk(KERN_ALERT"Failed to alloc hello_dev.\n");
		goto unregister;
	}        

	/*初始化设备*/
	err = __hello_setup_dev(hello_dev);
	if(err) {
		printk(KERN_ALERT"Failed to setup dev: %d.\n", err);
		goto cleanup;
	}        

	/*在/sys/class/目录下创建设备类别目录hello*/
	hello_class = class_create(THIS_MODULE, HELLO_DEVICE_CLASS_NAME);
	if(IS_ERR(hello_class)) {
		err = PTR_ERR(hello_class);
		printk(KERN_ALERT"Failed to create hello class.\n");
		goto destroy_cdev;
	}        

	/*在/dev/目录和/sys/class/hello目录下分别创建设备文件hello*/
	temp = device_create(hello_class, NULL, dev, "%s", HELLO_DEVICE_FILE_NAME);
	if(IS_ERR(temp)) {
		err = PTR_ERR(temp);
		printk(KERN_ALERT"Failed to create hello device.");
		goto destroy_class;
	}        

	/*在/sys/class/hello/hello目录下创建属性文件val*/
	err = device_create_file(temp, &dev_attr_val);
	if(err < 0) {
		printk(KERN_ALERT"Failed to create attribute val.");                
		goto destroy_device;
	}

	dev_set_drvdata(temp, hello_dev);        

	/*创建/proc/hello文件*/
	hello_create_proc();

	printk(KERN_ALERT"Succedded to initialize hello device.\n");
	return 0;

destroy_device:
	device_destroy(hello_class, dev);

destroy_class:
	class_destroy(hello_class);

destroy_cdev:
	cdev_del(&(hello_dev->dev));

cleanup:
	kfree(hello_dev);

unregister:
	unregister_chrdev_region(MKDEV(hello_major, hello_minor), 1);

fail:
	return err;
}

/*模块卸载方法*/
static void __exit hello_exit(void) {
	dev_t devno = MKDEV(hello_major, hello_minor);

	printk(KERN_ALERT"Destroy hello device.\n");        

	/*删除/proc/hello文件*/
	hello_remove_proc();        

	/*销毁设备类别和设备*/
	if(hello_class) {
		device_destroy(hello_class, MKDEV(hello_major, hello_minor));
		class_destroy(hello_class);
	}        

	/*删除字符设备和释放设备内存*/
	if(hello_dev) {
		cdev_del(&(hello_dev->dev));
		kfree(hello_dev);
	}        

	/*释放设备号*/
	unregister_chrdev_region(devno, 1);
}

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("First Android Driver");

module_init(hello_init);
module_exit(hello_exit);

#endif

定义传统的设备文件访问方法,主要是定义hello_open、hello_release、hello_read和hello_write这四个打开、释放、读和写设备文件的方法。

定义通过devfs文件系统访问方法,这里把设备的寄存器val看成是设备的一个属性,通过读写这个属性来对设备进行访问,主要是实现hello_val_show和hello_val_store两个方法,同时定义了两个内部使用的访问val值的方法__hello_get_val和__hello_set_val。

定义通过proc文件系统访问方法,主要实现了hello_proc_read和hello_proc_write两个方法,同时定义了在proc文件系统创建和删除文件的方法hello_create_proc和hello_remove_proc。

最后,定义模块加载和卸载方法,这里只要是执行设备注册和初始化操作。


五.在hello目录中新增Kconfig和Makefile两个文件,其中Kconfig是在编译前执行配置命令make menuconfig时用到的,而Makefile是执行编译命令make是用到的:

Kconfig文件的内容

config HELLO
	tristate "First Android Driver"
	default n
	help
	This is the first android driver.

Makefile文件的内容

obj-$(CONFIG_HELLO) += hello.o

     在Kconfig文件中,tristate表示编译选项HELLO支持在编译内核时,hello模块支持以模块、内建和不编译三种编译方法,默认是不编译,因此,在编译内核前,我们还需要执行make menuconfig命令来配置编译选项,使得hello可以以模块或者内建的方法进行编译。

     在Makefile文件中,根据选项HELLO的值,执行不同的编译方法。


六. 修改arch/arm/Kconfig和drivers/kconfig两个文件,在menu "Device Drivers"和endmenu之间添加一行:

source "drivers/hello/Kconfig"

这样,执行make menuconfig时,就可以配置hello模块的编译选项了。. 


七. 修改drivers/Makefile文件,添加一行:

obj-$(CONFIG_HELLO) += hello/

 八. 配置编译选项:

USER-NAME@MACHINE-NAME:~/Android/kernel/goldfish$ make menuconfig

        找到"Device Drivers" => "First Android Drivers"选项,设置为y。
        注意,如果内核不支持动态加载模块,这里不能选择m,虽然我们在Kconfig文件中配置了HELLO选项为tristate。要支持动态加载模块选项,必须要在配置菜单中选择Enable loadable module support选项;在支持动态卸载模块选项,必须要在Enable loadable module support菜单项中,选择Module unloading选项。


九. 编译:

USER-NAME@MACHINE-NAME:~/Android/kernel/goldfish$ make

编译成功后,就可以在hello目录下看到hello.o文件了,这时候编译出来的zImage已经包含了hello驱动。


十. 参照在Ubuntu上下载、编译和安装Android最新内核源代码(Linux Kernel)一文所示,运行新编译的内核文件,验证hello驱动程序是否已经正常安装:

USER-NAME@MACHINE-NAME:~/Android$ emulator -kernel ./kernel/goldfish/arch/arm/boot/zImage &
USER-NAME@MACHINE-NAME:~/Android$ adb shell


        进入到dev目录,可以看到hello设备文件:
root@android:/ # cd dev
root@android:/dev # ls


        进入到proc目录,可以看到hello文件:
root@android:/ # cd proc
root@android:/proc # ls


        访问hello文件的值:
        root@android:/proc # cat hello
        0
        root@android:/proc # echo '5' > hello
        root@android:/proc # cat hello
        5


        进入到sys/class目录,可以看到hello目录:
        root@android:/ # cd sys/class
        root@android:/sys/class # ls


        进入到hello目录,可以看到hello目录:
        root@android:/sys/class # cd hello
        root@android:/sys/class/hello # ls


        进入到下一层hello目录,可以看到val文件:
        root@android:/sys/class/hello # cd hello
        root@android:/sys/class/hello/hello # ls


        访问属性文件val的值:
        root@android:/sys/class/hello/hello # cat val
        5
        root@android:/sys/class/hello/hello # echo '0'  > val
        root@android:/sys/class/hello/hello # cat val
        0


        至此,我们的hello内核驱动程序就完成了,并且验证一切正常。这里我们采用的是系统提供的方法和驱动程序进行交互,也就是通过proc文件系统和devfs文件系统的方法,下一篇文章中,我们将通过自己编译的C语言程序来访问/dev/hello文件来和hello驱动程序交互,敬请期待。

你可能感兴趣的:(android,struct,Module,ubuntu,Class,linux内核)