一 插入排序
该算法在数据规模小的时候十分高效,该算法每次插入第K+1到前K个有序数组中一个合适位置,K从0开始到N-1,从而完成排序:
package
algorithms;
/**
*
@author
yovn
*/
public
class
InsertSorter
<
E
extends
Comparable
<
E
>>
extends
Sorter
<
E
>
{
/*
(non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
public
void
sort(E[] array,
int
from,
int
len) {
E tmp
=
null
;
for
(
int
i
=
from
+
1
;i
<
from
+
len;i
++
)
{
tmp
=
array[i];
int
j
=
i;
for
(;j
>
from;j
--
)
{
if
(tmp.compareTo(array[j
-
1
])
<
0
)
{
array[j]
=
array[j
-
1
];
}
else
break
;
}
array[j]
=
tmp;
}
}
}
二 冒泡排序
这可能是最简单的排序算法了,算法思想是每次从数组末端开始比较相邻两元素,把第i小的冒泡到数组的第i个位置。i从0一直到N-1从而完成排序。(当然也可以从数组开始端开始比较相邻两元素,把第i大的冒泡到数组的第N-i个位置。i从0一直到N-1从而完成排序。)
package
algorithms;
/**
*
@author
yovn
*
*/
public
class
BubbleSorter
<
E
extends
Comparable
<
E
>>
extends
Sorter
<
E
>
{
private
static
boolean
DWON
=
true
;
public
final
void
bubble_down(E[] array,
int
from,
int
len)
{
for
(
int
i
=
from;i
<
from
+
len;i
++
)
{
for
(
int
j
=
from
+
len
-
1
;j
>
i;j
--
)
{
if
(array[j].compareTo(array[j
-
1
])
<
0
)
{
swap(array,j
-
1
,j);
}
}
}
}
public
final
void
bubble_up(E[] array,
int
from,
int
len)
{
for
(
int
i
=
from
+
len
-
1
;i
>=
from;i
--
)
{
for
(
int
j
=
from;j
<
i;j
++
)
{
if
(array[j].compareTo(array[j
+
1
])
>
0
)
{
swap(array,j,j
+
1
);
}
}
}
}
@Override
public
void
sort(E[] array,
int
from,
int
len) {
if
(DWON)
{
bubble_down(array,from,len);
}
else
{
bubble_up(array,from,len);
}
}
}
三,选择排序
选择排序相对于冒泡来说,它不是每次发现逆序都交换,而是在找到全局第i小的时候记下该元素位置,最后跟第i个元素交换,从而保证数组最终的有序。
相对与插入排序来说,选择排序每次选出的都是全局第i小的,不会调整前i个元素了。
package
algorithms;
/**
*
@author
yovn
*
*/
public
class
SelectSorter
<
E
extends
Comparable
<
E
>>
extends
Sorter
<
E
>
{
/*
(non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public
void
sort(E[] array,
int
from,
int
len) {
for
(
int
i
=
0
;i
<
len;i
++
)
{
int
smallest
=
i;
int
j
=
i
+
from;
for
(;j
<
from
+
len;j
++
)
{
if
(array[j].compareTo(array[smallest])
<
0
)
{
smallest
=
j;
}
}
swap(array,i,smallest);
}
}
}
四 Shell排序
Shell排序可以理解为插入排序的变种,它充分利用了插入排序的两个特点:
1)当数据规模小的时候非常高效
2)当给定数据已经有序时的时间代价为O(N)
所以,Shell排序每次把数据分成若个小块,来使用插入排序,而且之后在这若个小块排好序的情况下把它们合成大一点的小块,继续使用插入排序,不停的合并小块,知道最后成一个块,并使用插入排序。
这里每次分成若干小块是通过“增量” 来控制的,开始时增量交大,接近N/2,从而使得分割出来接近N/2个小块,逐渐的减小“增量“最终到减小到1。
一直较好的增量序列是2^k-1,2^(k-1)-1,.....7,3,1,这样可使Shell排序时间复杂度达到O(N^1.5)
所以我在实现Shell排序的时候采用该增量序列
package
algorithms;
/**
*
@author
yovn
*/
public
class
ShellSorter
<
E
extends
Comparable
<
E
>>
extends
Sorter
<
E
>
{
/*
(non-Javadoc)
* Our delta value choose 2^k-1,2^(k-1)-1,.7,3,1.
* complexity is O(n^1.5)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public
void
sort(E[] array,
int
from,
int
len) {
//
1.calculate the first delta value;
int
value
=
1
;
while
((value
+
1
)
*
2
<
len)
{
value
=
(value
+
1
)
*
2
-
1
;
}
for
(
int
delta
=
value;delta
>=
1
;delta
=
(delta
+
1
)
/
2
-
1
)
{
for
(
int
i
=
0
;i
<
delta;i
++
)
{
modify_insert_sort(array,from
+
i,len
-
i,delta);
}
}
}
private
final
void
modify_insert_sort(E[] array,
int
from,
int
len,
int
delta) {
if
(len
<=
1
)
return
;
E tmp
=
null
;
for
(
int
i
=
from
+
delta;i
<
from
+
len;i
+=
delta)
{
tmp
=
array[i];
int
j
=
i;
for
(;j
>
from;j
-=
delta)
{
if
(tmp.compareTo(array[j
-
delta])
<
0
)
{
array[j]
=
array[j
-
delta];
}
else
break
;
}
array[j]
=
tmp;
}
}
}
五 快速排序
快速排序是目前使用可能最广泛的排序算法了。
一般分如下步骤:
1)选择一个枢纽元素(有很对选法,我的实现里采用去中间元素的简单方法)
2)使用该枢纽元素分割数组,使得比该元素小的元素在它的左边,比它大的在右边。并把枢纽元素放在合适的位置。
3)根据枢纽元素最后确定的位置,把数组分成三部分,左边的,右边的,枢纽元素自己,对左边的,右边的分别递归调用快速排序算法即可。
快速排序的核心在于分割算法,也可以说是最有技巧的部分。
package
algorithms;
/**
*
@author
yovn
*
*/
public
class
QuickSorter
<
E
extends
Comparable
<
E
>>
extends
Sorter
<
E
>
{
/*
(non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public
void
sort(E[] array,
int
from,
int
len) {
q_sort(array,from,from
+
len
-
1
);
}
private
final
void
q_sort(E[] array,
int
from,
int
to) {
if
(to
-
from
<
1
)
return
;
int
pivot
=
selectPivot(array,from,to);
pivot
=
partion(array,from,to,pivot);
q_sort(array,from,pivot
-
1
);
q_sort(array,pivot
+
1
,to);
}
private
int
partion(E[] array,
int
from,
int
to,
int
pivot) {
E tmp
=
array[pivot];
array[pivot]
=
array[to];
//
now to's position is available
while
(from
!=
to)
{
while
(from
<
to
&&
array[from].compareTo(tmp)
<=
0
)from
++
;
if
(from
<
to)
{
array[to]
=
array[from];
//
now from's position is available
to
--
;
}
while
(from
<
to
&&
array[to].compareTo(tmp)
>=
0
)to
--
;
if
(from
<
to)
{
array[from]
=
array[to];
//
now to's position is available now
from
++
;
}
}
array[from]
=
tmp;
return
from;
}
private
int
selectPivot(E[] array,
int
from,
int
to) {
return
(from
+
to)
/
2
;
}
}
六 归并排序
算法思想是每次把待排序列分成两部分,分别对这两部分递归地用归并排序,完成后把这两个子部分合并成一个
序列。
归并排序借助一个全局性临时数组来方便对子序列的归并,该算法核心在于归并。
package
algorithms;
import
java.lang.reflect.Array;
/**
*
@author
yovn
*
*/
public
class
MergeSorter
<
E
extends
Comparable
<
E
>>
extends
Sorter
<
E
>
{
/*
(non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@SuppressWarnings(
"
unchecked
"
)
@Override
public
void
sort(E[] array,
int
from,
int
len) {
if
(len
<=
1
)
return
;
E[] temporary
=
(E[])Array.newInstance(array[
0
].getClass(),len);
merge_sort(array,from,from
+
len
-
1
,temporary);
}
private
final
void
merge_sort(E[] array,
int
from,
int
to, E[] temporary) {
if
(to
<=
from)
{
return
;
}
int
middle
=
(from
+
to)
/
2
;
merge_sort(array,from,middle,temporary);
merge_sort(array,middle
+
1
,to,temporary);
merge(array,from,to,middle,temporary);
}
private
final
void
merge(E[] array,
int
from,
int
to,
int
middle, E[] temporary) {
int
k
=
0
,leftIndex
=
0
,rightIndex
=
to
-
from;
System.arraycopy(array, from, temporary,
0
, middle
-
from
+
1
);
for
(
int
i
=
0
;i
<
to
-
middle;i
++
)
{
temporary[to
-
from
-
i]
=
array[middle
+
i
+
1
];
}
while
(k
<
to
-
from
+
1
)
{
if
(temporary[leftIndex].compareTo(temporary[rightIndex])
<
0
)
{
array[k
+
from]
=
temporary[leftIndex
++
];
}
else
{
array[k
+
from]
=
temporary[rightIndex
--
];
}
k
++
;
}
}
}
七 堆排序
堆是一种完全二叉树,一般使用数组来实现。
堆主要有两种核心操作,
1)从指定节点向上调整(shiftUp)
2)从指定节点向下调整(shiftDown)
建堆,以及删除堆定节点使用shiftDwon,而在插入节点时一般结合两种操作一起使用。
堆排序借助最大值堆来实现,第i次从堆顶移除最大值放到数组的倒数第i个位置,然后shiftDown到倒数第i+1个位置,一共执行N此调整,即完成排序。
显然,堆排序也是一种选择性的排序,每次选择第i大的元素。
package
algorithms;
/**
*
@author
yovn
*
*/
public
class
HeapSorter
<
E
extends
Comparable
<
E
>>
extends
Sorter
<
E
>
{
/*
(non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public
void
sort(E[] array,
int
from,
int
len) {
build_heap(array,from,len);
for
(
int
i
=
0
;i
<
len;i
++
)
{
//
swap max value to the (len-i)-th position
swap(array,from,from
+
len
-
1
-
i);
shift_down(array,from,len
-
1
-
i,
0
);
//
always shiftDown from 0
}
}
private
final
void
build_heap(E[] array,
int
from,
int
len) {
int
pos
=
(len
-
1
)
/
2
;
//
we start from (len-1)/2, because branch's node +1=leaf's node, and all leaf node is already a heap
for
(
int
i
=
pos;i
>=
0
;i
--
)
{
shift_down(array,from,len,i);
}
}
private
final
void
shift_down(E[] array,
int
from,
int
len,
int
pos)
{
E tmp
=
array[from
+
pos];
int
index
=
pos
*
2
+
1
;
//
use left child
while
(index
<
len)
//
until no child
{
if
(index
+
1
<
len
&&
array[from
+
index].compareTo(array[from
+
index
+
1
])
<
0
)
//
right child is bigger
{
index
+=
1
;
//
switch to right child
}
if
(tmp.compareTo(array[from
+
index])
<
0
)
{
array[from
+
pos]
=
array[from
+
index];
pos
=
index;
index
=
pos
*
2
+
1
;
}
else
{
break
;
}
}
array[from
+
pos]
=
tmp;
}
}
八 桶式排序
桶式排序不再是基于比较的了,它和基数排序同属于分配类的排序,这类排序的特点是事先要知道待排序列的一些特征。
桶式排序事先要知道待排序列在一个范围内,而且这个范围应该不是很大的。
比如知道待排序列在[0,M)内,那么可以分配M个桶,第I个桶记录I的出现情况,最后根据每个桶收到的位置信息把数据输出成有序的形式。
这里我们用两个临时性数组,一个用于记录位置信息,一个用于方便输出数据成有序方式,另外我们假设数据落在0到MAX,如果所给数据不是从0开始,你可以把每个数减去最小的数。
package
algorithms;
/**
*
@author
yovn
*
*/
public
class
BucketSorter {
public
void
sort(
int
[] keys,
int
from,
int
len,
int
max)
{
int
[] temp
=
new
int
[len];
int
[] count
=
new
int
[max];
for
(
int
i
=
0
;i
<
len;i
++
)
{
count[keys[from
+
i]]
++
;
}
//
calculate position info
for
(
int
i
=
1
;i
<
max;i
++
)
{
count[i]
=
count[i]
+
count[i
-
1
];
//
this means how many number which is less or equals than i,thus it is also position + 1
}
System.arraycopy(keys, from, temp,
0
, len);
for
(
int
k
=
len
-
1
;k
>=
0
;k
--
)
//from the ending to beginning can keep the stability
{
keys[
--
count[temp[k]]]
=
temp[k];
//
position +1 =count
}
}
/**
*
@param
args
*/
public
static
void
main(String[] args) {
int
[] a
=
{
1
,
4
,
8
,
3
,
2
,
9
,
5
,
0
,
7
,
6
,
9
,
10
,
9
,
13
,
14
,
15
,
11
,
12
,
17
,
16
};
BucketSorter sorter
=
new
BucketSorter();
sorter.sort(a,
0
,a.length,
20
);
//
actually is 18, but 20 will also work
for
(
int
i
=
0
;i
<
a.length;i
++
)
{
System.out.print(a[i]
+
"
,
"
);
}
}
}
九 基数排序
基数排序可以说是扩展了的桶式排序,比如当待排序列在一个很大的范围内,比如0到999999内,那么用桶式排序是很浪费空间的。而基数排序把每个排序码拆成由d个排序码,比如任何一个6位数(不满六位前面补0)拆成6个排序码,分别是个位的,十位的,百位的。。。。
排序时,分6次完成,每次按第i个排序码来排。
一般有两种方式:
1) 高位优先(MSD): 从高位到低位依次对序列排序
2)低位优先(LSD): 从低位到高位依次对序列排序
计算机一般采用低位优先法(人类一般使用高位优先),但是采用低位优先时要确保排序算法的稳定性。
基数排序借助桶式排序,每次按第N位排序时,采用桶式排序。对于如何安排每次落入同一个桶中的数据有两种安排方法:
1)顺序存储:每次使用桶式排序,放入r个桶中,,相同时增加计数。
2)链式存储:每个桶通过一个静态队列来跟踪。
package
algorithms;
import
java.util.Arrays;
/**
*
@author
yovn
*
*/
public
class
RadixSorter {
public
static
boolean
USE_LINK
=
true
;
/**
*
*
@param
keys
*
@param
from
*
@param
len
*
@param
radix key's radix
*
@param
d how many sub keys should one key divide to
*/
public
void
sort(
int
[] keys,
int
from ,
int
len,
int
radix,
int
d)
{
if
(USE_LINK)
{
link_radix_sort(keys,from,len,radix,d);
}
else
{
array_radix_sort(keys,from,len,radix,d);
}
}
private
final
void
array_radix_sort(
int
[] keys,
int
from,
int
len,
int
radix,
int
d)
{
int
[] temporary
=
new
int
[len];
int
[] count
=
new
int
[radix];
int
R
=
1
;
for
(
int
i
=
0
;i
<
d;i
++
)
{
System.arraycopy(keys, from, temporary,
0
, len);
Arrays.fill(count,
0
);
for
(
int
k
=
0
;k
<
len;k
++
)
{
int
subkey
=
(temporary[k]
/
R)
%
radix;
count[subkey]
++
;
}
for
(
int
j
=
1
;j
<
radix;j
++
)
{
count[j]
=
count[j]
+
count[j
-
1
];
}
for
(
int
m
=
len
-
1
;m
>=
0
;m
--
)
{
int
subkey
=
(temporary[m]
/
R)
%
radix;
--
count[subkey];
keys[from
+
count[subkey]]
=
temporary[m];
}
R
*=
radix;
}
}
private
static
class
LinkQueue
{
int
head
=-
1
;
int
tail
=-
1
;
}
private
final
void
link_radix_sort(
int
[] keys,
int
from,
int
len,
int
radix,
int
d) {
int
[] nexts
=
new
int
[len];
LinkQueue[] queues
=
new
LinkQueue[radix];
for
(
int
i
=
0
;i
<
radix;i
++
)
{
queues[i]
=
new
LinkQueue();
}
for
(
int
i
=
0
;i
<
len
-
1
;i
++
)
{
nexts[i]
=
i
+
1
;
}
nexts[len
-
1
]
=-
1
;
int
first
=
0
;
for
(
int
i
=
0
;i
<
d;i
++
)
{
link_radix_sort_distribute(keys,from,len,radix,i,nexts,queues,first);
first
=
link_radix_sort_collect(keys,from,len,radix,i,nexts,queues);
}
int
[] tmps
=
new
int
[len];
int
k
=
0
;
while
(first
!=-
1
)
{
tmps[k
++
]
=
keys[from
+
first];
first
=
nexts[first];
}
System.arraycopy(tmps,
0
, keys, from, len);
}
private
final
void
link_radix_sort_distribute(
int
[] keys,
int
from,
int
len,
int
radix,
int
d,
int
[] nexts, LinkQueue[] queues,
int
first) {
for
(
int
i
=
0
;i
<
radix;i
++
)queues[i].head
=
queues[i].tail
=-
1
;
while
(first
!=-
1
)
{
int
val
=
keys[from
+
first];
for
(
int
j
=
0
;j
<
d;j
++
)val
/=
radix;
val
=
val
%
radix;
if
(queues[val].head
==-
1
)
{
queues[val].head
=
first;
}
else
{
nexts[queues[val].tail]
=
first;
}
queues[val].tail
=
first;
first
=
nexts[first];
}
}
private
int
link_radix_sort_collect(
int
[] keys,
int
from,
int
len,
int
radix,
int
d,
int
[] nexts, LinkQueue[] queues) {
int
first
=
0
;
int
last
=
0
;
int
fromQueue
=
0
;
for
(;(fromQueue
<
radix
-
1
)
&&
(queues[fromQueue].head
==-
1
);fromQueue
++
);
first
=
queues[fromQueue].head;
last
=
queues[fromQueue].tail;
while
(fromQueue
<
radix
-
1
&&
queues[fromQueue].head
!=-
1
)
{
fromQueue
+=
1
;
for
(;(fromQueue
<
radix
-
1
)
&&
(queues[fromQueue].head
==-
1
);fromQueue
++
);
nexts[last]
=
queues[fromQueue].head;
last
=
queues[fromQueue].tail;
}
if
(last
!=-
1
)nexts[last]
=-
1
;
return
first;
}
/**
*
@param
args
*/
public
static
void
main(String[] args) {
int
[] a
=
{
1
,
4
,
8
,
3
,
2
,
9
,
5
,
0
,
7
,
6
,
9
,
10
,
9
,
135
,
14
,
15
,
11
,
222222222
,
1111111111
,
12
,
17
,
45
,
16
};
USE_LINK
=
true
;
RadixSorter sorter
=
new
RadixSorter();
sorter.sort(a,
0
,a.length,
10
,
10
);
for
(
int
i
=
0
;i
<
a.length;i
++
)
{
System.out.print(a[i]
+
"
,
"
);
}
}
}