初步了解完PCI总线标准之后,我们接下来正式开始PCIe设备的漫游之旅。从我们按下PC的电源按钮开始,BIOS就接管系统控制权开始工作,它会先进行一些内存和设备的初始化工作(当然,也包括我们的PCI设备),由于商业上的原因,Phoenix等厂商的BIOS代码需要授权协议,在此,我们以另外一个款开源BIOS(openbios)为例,来剖析BIOS中,我们的PCIe设备是如何被找到以及初始化的。
PCI设备的扫描是基于深度优先搜索算法(DFS:Depth First Search),也就是说,下级分支最多的PCI桥将最先完成其子设备的扫描。下面我们以图片来具体说明,BIOS是如何一步步完成PCI 设备扫描的。
第一步:
PCI Host 主桥扫描Bus 0上的设备(在一个处理器系统中,一般将与HOST主桥直接相连的PCI总线被命名为PCI Bus 0),系统首先会忽略Bus 0上的D1,D2等不会挂接PCI桥的设备,主桥发现Bridge 1后,将Bridge1 下面的PCI Bus定为 Bus 1,系统将初始化Bridge 1的配置空间,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成0和1,以表明Bridge1 的上游总线是0,下游总线是1,由于还无法确定Bridge1下挂载设备的具体情况,系统先暂时将Subordinate Bus Number设为0xFF。如下图所示:
第二步:
系统开始扫描Bus 1,将会发现Bridge 2。系统将Bridge 2下面的PCI Bus定为Bus 2,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成1和2,和上一步一样暂时把Bridge 2 的Subordinate Bus Number设为0xFF。如下图所示:
第三步:
系统继续扫描Bus 2,将会发现Bridge 4。系统将Bridge 4下面的PCI Bus定为Bus 3,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成2和3,此后
系统继续扫描后发现Bus 3 下面已经没有任何Bridge了,意味着该PCI总线下已经没有任何挂载下游总线了,因此Bridge 4的Subordinate Bus Number的值已经可以确定为3了。
如下图所示:
第四步:
完成Bus 3的扫描后,系统返回到Bus 2继续扫描,发现Bus 2下面已经没有其他Bridge了。此时Bridge 2的Subordinate Bus Number的值也已经可以确定为3了。如下图所示:
第五步:
完成Bus 2的扫描后,系统返回到Bus1继续扫描,会发现Bridge 3,系统将Bridge 3下面的PCI Bus定为Bus 4。并将Bridge 4的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成1和4,此后系统继续扫描后发现Bus 4 下面已经没有任何Bridge了,意味着该PCI总线下已经没有挂载任何下游总线了,因此Bridge 3 的Subordinate Bus Number的值已经可以确定为4了。如下图所示:
第六步:
完成Bus 4的扫描后,系统返回到Bus 1继续扫描, 发现Bus 1下面已经没有其他Bridge了。此时Bridge 1的Subordinate Bus Number的值已经可以确定为4,系统返回Bus 0继续扫描(Bus 0下如果有其他它Bridge,将重复上述的步骤进行扫描)。至此,本例中的整个PCI的设备扫描已经完成了。最终的设备和总线的扫描结果如下图所示。
了解了上面PCI设备扫描的大概流程,我们接下来看看Bios代码中具体是如何实现这些扫描的。
一般来说,我们可以通过两个寄存器来访问PCI的配置空间(寄存器CONFIG_ADDRESS与CONFIG_DATA),在x86体系下,这两个寄存器分别对应0xCF8和0xCFC端口,对配置空间的访问都是通过对这两个寄存器的读写来实现先。CONFIG_ADDRESS寄存器的具体位组成如下图所示:
Bus Number : 总线号(8 bit),范围0--255。
Device Number: 设备号(5 bit),范围0--31。
Function Number: 功能号(3 bit),范围0--7。
Register Number: 寄存器号(6 bit),范围0--63 (配置空间一共256个字节,分割成64个4字节的寄存器,从0--63编号)。
因此,BIOS中PCI配置空间的读写可以封装成下面的函数:
static inline uint32_t pci_config_read32(pci_addr dev, uint8_t reg) { outl(dev | reg, 0xcf8); return inl(0xcfc | reg); } static inline void pci_config_write32(pci_addr dev, uint8_t reg, uint32_t val) { outl(dev | reg, 0xcf8); outl(val, 0xcfc); }
总体来说。该BIOS扫描过程中调用如下几个主要的函数:
ob_pci_init ----> ob_scan_pci_bus ----> pci_find_device ----> ob_pci_configure
下面我们来具体看看代码,首先BIOS执行ob_pci_init(void)函数
int ob_pci_init(void) { int bus; unsigned long mem_base, io_base; char *path; #ifdef CONFIG_DEBUG_PCI printk("Initializing PCI devices...\n"); #endif /* brute force bus scan */ /* Find all PCI bridges */ //获取系统指定的memeory与I/O空间的范围,分配给PCIe设备。 mem_base = arch->mem_base; /* I/O ports under 0x400 are used by devices mapped at fixed location. */ io_base = arch->io_base + 0x400; path = strdup(""); /*遍历256条总线*/ for (bus = 0; bus<0x100; bus++) { ob_scan_pci_bus(bus, &mem_base, &io_base, &path); } free(path); return 0; }
总线扫描具体实现:
static void ob_scan_pci_bus(int bus, unsigned long *mem_base, unsigned long *io_base, char **path) { int devnum, fn, is_multi, vid, did; unsigned int htype; pci_addr addr; pci_config_t config; const pci_dev_t *pci_dev; uint32_t ccode; uint8_t class, subclass, iface, rev; activate_device("/"); for (devnum = 0; devnum < 32; devnum++) { is_multi = 0; for (fn = 0; fn==0 || (is_multi && fn<8); fn++) { #ifdef CONFIG_XBOX if (pci_xbox_blacklisted (bus, devnum, fn)) continue; #endif addr = PCI_ADDR(bus, devnum, fn); /*获取设备配置空间地址*/ vid = pci_config_read16(addr, PCI_VENDOR_ID); /*获取Vendor ID*/ did = pci_config_read16(addr, PCI_DEVICE_ID); /*获取Device ID*/ if (vid==0xffff || vid==0) continue; ccode = pci_config_read16(addr, PCI_CLASS_DEVICE); class = ccode >> 8; subclass = ccode; iface = pci_config_read8(addr, PCI_CLASS_PROG); rev = pci_config_read8(addr, PCI_REVISION_ID); pci_dev = pci_find_device(class, subclass, iface,/*具体设备查找以及初始化*/ vid, did); #ifdef CONFIG_DEBUG_PCI printk("%x:%x.%x - %x:%x - ", bus, devnum, fn, vid, did); #endif htype = pci_config_read8(addr, PCI_HEADER_TYPE); if (fn == 0) is_multi = htype & 0x80; if (pci_dev == NULL || pci_dev->name == NULL) snprintf(config.path, sizeof(config.path), "%s/pci%x,%x", *path, vid, did); else snprintf(config.path, sizeof(config.path), "%s/%s", *path, pci_dev->name); #ifdef CONFIG_DEBUG_PCI printk("%s - ", config.path); #endif config.dev = addr & 0x00FFFFFF; REGISTER_NAMED_NODE(ob_pci_node, config.path); activate_device(config.path); ob_pci_configure(addr, &config, mem_base, io_base); /*配置设备的配置空间*/ ob_pci_add_properties(addr, pci_dev, &config); if (class == PCI_BASE_CLASS_BRIDGE && (subclass == PCI_SUBCLASS_BRIDGE_HOST || subclass == PCI_SUBCLASS_BRIDGE_PCI)) { /* host or bridge */ free(*path); *path = strdup(config.path); } } } device_end(); }
具体某条总线上的设备扫描由以下函数实现:
const pci_dev_t *pci_find_device (uint8_t class, uint8_t subclass, uint8_t iface, uint16_t vendor, uint16_t product) { int (*config_cb)(const pci_config_t *config); const pci_class_t *pclass; const pci_subclass_t *psubclass; const pci_iface_t *piface; const pci_dev_t *dev; const void *private; pci_dev_t *new; const char *name, *type; name = "unknown"; type = "unknown"; config_cb = NULL; private = NULL; if (class == 0x00 && subclass == 0x01) { /* Special hack for old style VGA devices */ class = 0x03; subclass = 0x00; } else if (class == 0xFF) { /* Special case for misc devices */ dev = misc_pci; goto find_device; } if (class > (sizeof(pci_classes) / sizeof(pci_class_t))) { name = "invalid PCI device"; type = "invalid"; goto bad_device; } pclass = &pci_classes[class]; name = pclass->name; type = pclass->type; for (psubclass = pclass->subc; ; psubclass++) { if (psubclass->subclass == 0xFF) goto bad_device; if (psubclass->subclass == subclass) { if (psubclass->name != NULL) name = psubclass->name; if (psubclass->type != NULL) type = psubclass->type; if (psubclass->config_cb != NULL) { config_cb = psubclass->config_cb; } if (psubclass->private != NULL) private = psubclass->private; if (psubclass->iface != NULL) break; dev = psubclass->devices; goto find_device; } } for (piface = psubclass->iface; ; piface++) { if (piface->iface == 0xFF) { dev = psubclass->devices; break; } if (piface->iface == iface) { if (piface->name != NULL) name = piface->name; if (piface->type != NULL) type = piface->type; if (piface->config_cb != NULL) { config_cb = piface->config_cb; } if (piface->private != NULL) private = piface->private; dev = piface->devices; break; } } find_device: if (dev == NULL) goto bad_device; for (;; dev++) { if (dev->vendor == 0xFFFF && dev->product == 0xFFFF) { goto bad_device; } if (dev->vendor == vendor && dev->product == product) { if (dev->name != NULL) name = dev->name; if (dev->type != NULL) type = dev->type; if (dev->config_cb != NULL) { config_cb = dev->config_cb; } if (dev->private != NULL) private = dev->private; new = malloc(sizeof(pci_dev_t)); if (new == NULL) return NULL; new->vendor = vendor; new->product = product; new->type = type; new->name = name; new->model = dev->model; new->compat = dev->compat; new->acells = dev->acells; new->scells = dev->scells; new->icells = dev->icells; new->config_cb = config_cb; new->private = private; return new; } } bad_device: printk("Cannot manage '%s' PCI device type '%s':\n %x %x (%x %x %x)\n", name, type, vendor, product, class, subclass, iface); return NULL; } 配置具体设备的配置空间 static void ob_pci_configure(pci_addr addr, pci_config_t *config, unsigned long *mem_base, unsigned long *io_base) { uint32_t smask, omask, amask, size, reloc, min_align; unsigned long base; pci_addr config_addr; int reg; uint8_t irq_pin, irq_line; /*配置中断引脚与中断编号*/ irq_pin = pci_config_read8(addr, PCI_INTERRUPT_PIN); if (irq_pin) { config->irq_pin = irq_pin; irq_pin = (((config->dev >> 11) & 0x1F) + irq_pin - 1) & 3; irq_line = arch->irqs[irq_pin]; pci_config_write8(addr, PCI_INTERRUPT_LINE, irq_line); config->irq_line = irq_line; } else config->irq_line = -1; /*配置memory空间和I/O空间*/ omask = 0x00000000; for (reg = 0; reg < 7; reg++) { config->assigned[reg] = 0x00000000; config->sizes[reg] = 0x00000000; if ((omask & 0x0000000f) == 0x4) { /* 64 bits memory mapping */ continue; } if (reg == 6) config_addr = PCI_ROM_ADDRESS; else config_addr = PCI_BASE_ADDR_0 + reg * 4; config->regions[reg] = pci_config_read32(addr, config_addr); /* get region size */ pci_config_write32(addr, config_addr, 0xffffffff); smask = pci_config_read32(addr, config_addr); if (smask == 0x00000000 || smask == 0xffffffff) continue; if (smask & 0x00000001 && reg != 6) { /* I/O space */ base = *io_base; min_align = 1 << 7; amask = 0x00000001; pci_config_write16(addr, PCI_COMMAND, pci_config_read16(addr, PCI_COMMAND) | PCI_COMMAND_IO); } else { /* Memory Space */ base = *mem_base; min_align = 1 << 16; amask = 0x0000000F; if (reg == 6) { smask |= 1; /* ROM */ } pci_config_write16(addr, PCI_COMMAND, pci_config_read16(addr, PCI_COMMAND) | PCI_COMMAND_MEMORY); } omask = smask & amask; smask &= ~amask; size = (~smask) + 1; config->sizes[reg] = size; reloc = base; if (size < min_align) size = min_align; reloc = (reloc + size -1) & ~(size - 1); if (*io_base == base) { *io_base = reloc + size; reloc -= arch->io_base; } else { *mem_base = reloc + size; } pci_config_write32(addr, config_addr, reloc | omask); config->assigned[reg] = reloc | omask; } } 通过以上这些步骤,Bios就完成了所有PCI设备的扫描,并且为每个设备分配好了系统资源。