- CSS对DOM解析的阻塞作用
MggnHaskell
css前端DOM
CSS(层叠样式表)是用于定义网页元素外观和样式的语言。它与HTML(超文本标记语言)一起构成了Web页面的核心构建块。在浏览器渲染页面时,DOM(文档对象模型)树的构建和渲染是一个重要的过程。在这个过程中,CSS可能会对DOM解析产生一定的阻塞作用。当浏览器解析HTML文档时,它会构建DOM树,这是一个表示文档结构的树形结构。这个过程是逐步进行的,浏览器从上到下逐行读取HTML文档,并将每个元素
- [C++]使用纯opencv部署yolov12目标检测onnx模型
FL1623863129
深度学习c++opencvYOLO
yolov12官方框架:sunsmarterjie/yolov12【算法介绍】在C++中使用纯OpenCV部署YOLOv12进行目标检测是一项具有挑战性的任务,因为YOLOv12通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN
- 蓝桥杯集训·每日一题2025 农夫约翰最喜欢的操作
GGKingV50
蓝桥杯职场和发展
又是农夫约翰的农场上寒冷而无聊的一天。为了打发时间,农夫约翰发明了一种关于在整数数组上进行操作的有趣的休闲活动。农夫约翰有一个包含N个非负整数的数组a和一个整数M。然后,农夫约翰会请贝茜给出一个整数x。在一次操作中,农夫约翰可以选择一个索引i,并对ai加1或减1。农夫约翰的无聊值是他必须执行的最小操作次数,以使得对于所有的1≤i≤N,ai−x均可被M整除。对于所有可能的x,输出农夫约翰的最小无聊值
- JavaScript系列(86)--现代构建工具详解
ᅟᅠ 一进制
JavaScriptjavascriptrust开发语言
JavaScript现代构建工具详解现代前端开发离不开构建工具,它们帮助我们处理模块打包、代码转换、资源优化等任务。让我们深入了解主流的构建工具及其应用。构建工具概述小知识:构建工具主要解决代码转换、文件优化、模块打包、自动刷新、代码分割等问题。主流的构建工具包括webpack、Vite、Rollup等,它们各有特点和适用场景。webpack详解//1.webpack配置classWebpackC
- 基于势能法和切片法的斜齿轮时变啮合刚度求解模型的Matlab程序设计及综合刚度曲线拟合公式解析
AbVhftfAZW
matlab人工智能算法
Matlab技术在斜齿轮时变啮合刚度求解模型中的应用分析一、引言在工程技术领域,斜齿轮作为高效传动的重要部件,其啮合刚度的准确计算对于提升传动性能、确保设备运行稳定至关重要。本文将围绕Matlab编程技术在斜齿轮时变啮合刚度求解模型中的应用展开讨论,特别是通过势能法和切片法相结合的方式编写Matlab程序,以满足工程实际需求。二、时变啮合刚度求解模型概述斜齿轮的时变啮合刚度求解模型是一个复杂的多物
- OmniPlan Pro for Mac 项目管理流程
甜于酸
办公软件macmacos
介绍OmniPlanPromac是一款项目管理流程软件。能被用来优化资源、精简预算快速共享或添加任务,旨在能够帮助您可视化维护和简化项目,包含了自定检视表、阶层式的纲要模式、成本追踪、里程碑、任务限制与相关性、资源分配、时程控制、Gantt图表、违反事项显示、关键路径等等非常实用的多种功能。效果下载百度网盘:https://pan.baidu.com/s/13yi75kSPFx3e5l9mcadt
- ECMAScript6
2401_85112041
作者\/es6前端ecmascript
因此,ECMAScript和JavaScript的关系是,前者是后者的规格,后者是前者的一种实现(另外的ECMAScript方言还有Jscript和ActionScript)。日常场合,这两个词是可以互换的ECMAScript是由ECMA(一个类似W3C的标准组织)参与进行标准化的语法规范。ECMAScript定义了:语言语法–语法解析规则、关键字、语句、声明、运算符等类型–布尔型、数字、字符串、
- 基于石川公式法的齿轮时变啮合刚度计算(附带MATLAB代码)
传说里的故事
matlab算法机器学习Matlab
齿轮传动是一种常见且广泛应用的机械传动方式。在设计和分析齿轮传动系统时,了解齿轮的啮合刚度是非常重要的。啮合刚度描述了齿轮在啮合过程中的弹性变形和刚性响应,对于预测齿轮传动系统的动力学行为和振动响应非常关键。石川公式是一种常用的方法,用于计算齿轮的时变啮合刚度。时变啮合刚度考虑了齿轮啮合面的变形,包括齿根弯曲、齿顶变形等因素。下面将介绍基于石川公式法的齿轮时变啮合刚度的计算,并提供相应的MATLA
- 基于Python+OpenCV校园人脸采集和人脸识别系统
2301_79809972
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与意义随着科技的发展和校园安全管理的需求增加,人脸识别技术逐渐被引入到校园安全管理中。人脸识别技术可以实现对校园内人员的快速、准确识别,提高校园安全管理水平。本项目旨在利用Python和OpenCV库,开发一个校园人脸采集和人脸识别系统,实现对校园内人员的人脸信
- 【算法】贪心算法
希冀123
算法算法贪心算法
贪心算法1.贪心介绍2.贪心本质3.最优装载问题(1)问题分析(2)算法实现(3)算法分析1.贪心介绍贪心算法总是做出当前最好的选择,期望通过局部最优选择得到全局最优的解决方案。但贪心不是从整体最优来考虑的,一旦做出选择,不会再改变,只能达到某种意义上的局部最优。简记为:想要当下最好的,但会导致目光短浅2.贪心本质应用情景:当出现两个特性——贪心选择性质和最优子结构性质时可用。(1)贪心选择性质:
- 射频学习之HFSS入门(一)
OKay_J
学习经验分享笔记
HFSS下载与介绍下载介绍基本概念特点工作流程优势下载我下载的版本是ANSYSElectromagneticsSuite2023R1通过这篇文章下载,教程非常详细介绍基本概念HFSS(High-FrequencyStructureSimulator)是由ANSYS开发的一个专业的电磁场仿真软件,广泛用于高频电子工程中的电磁场分析。它主要用于设计和优化电磁设备,如天线、微波元件、射频(RF)设备等,
- MySQL 数据库作发布系统的存储,一天五万条以上的增量, 预 计运维三年,怎么优化?思维导图 代码示例(java 架构)
用心去追梦
数据库mysql运维
对于一个每天有五万条以上增量、预计运维三年的MySQL发布系统,优化和规划是非常重要的。这不仅涉及到数据库本身的性能优化,还包括架构设计、硬件选择、监控与维护等多个方面。以下是一些建议和策略:优化策略数据库架构设计分库分表(Sharding):将数据分散到多个数据库或表中,减轻单个实例的压力。读写分离:使用主从复制,将读操作分流到从服务器上,减少主服务器负载。缓存机制:利用Redis或Memcac
- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- 面试题-Vue2和Vue3的区别
奶糖 肥晨
vue3vuevue.jsjavascript前端
文章目录1.响应式系统2.组合式API(CompositionAPI)3.Fragment(碎片)4.Teleport(传送门)5.性能改进6.移除或改变的功能7.构建工具8.TypeScript支持Vue2和Vue3之间存在许多重要的区别,这些区别涵盖了性能、API设计、组合式API(CompositionAPI)、响应式系统以及构建工具等方面。以下是一些关键的区别,并附带代码示例来加以说明。1
- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- > vue-standard@0.1.0 serve > vue-cli-service serve ‘vue-cli-service‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。
Merlyn10
vue.js前端
出现'vue-cli-service'不是内部或外部命令错误通常意味着vue-cli-service没有被正确安装或者没有被添加到系统的PATH中。vue-cli-service是VueCLI提供的一个开发依赖,它应该在项目的node_modules/.bin目录下。要解决这个问题,请尝试以下步骤:确保依赖已安装:在项目根目录下运行以下命令来安装项目的依赖:npminstall或者如果你使用的是Y
- 核货宝:支持二次开发的移动订货系统分享
核货宝订货系统
移动订货系统开源订货系统批发订货商城移动订货系统
在快节奏的商业环境中,企业对高效、便捷的订货管理系统需求日益迫切。核货宝移动订货系统凭借其强大的功能和灵活的二次开发特性,成为众多企业优化订货流程、提升业务效率的得力助手。一、进销存管理(一)功能内容库存管理:对库存进行全方位实时监控,涵盖库存数量、库存成本以及库存位置等信息。系统支持库存盘点功能,定期或不定期对库存进行盘点,确保账实相符。当库存发生变动时,如商品入库、出库,系统自动更新库存数据。
- 时序差分(TD)算法:
waski
强化学习人工智能机器学习
TD算法:小猴子每走1步,看一下这个路口的V值,还有获得的奖励r;回到原来的路口,把刚刚看到的V值和奖励r进行运算,估算出V值。和蒙地卡罗(MC)不同:TD算法只需要走N步。就可以开始回溯更新。和蒙地卡罗(MC)一样:小猴需要先走N步,每经过一个状态,把奖励记录下来。然后开始回溯。那么,状态的V值怎么算呢?其实和蒙地卡罗一样,我们就假设N步之后,就到达了最终状态了。假设“最终状态”上我们之前没有走
- 在PyAudio模块中安装时出错
潮易
python
在PyAudio模块中安装时出错首先,你需要确保你的电脑上已经安装了Python和pip。然后,你可以使用以下命令来安装PyAudio模块:```bashpipinstallPyAudio```如果上述命令无法安装,你可能需要安装一些额外的库。在Ubuntu系统中,你需要先安装一些依赖库,然后再尝试安装PyAudio。你可以使用以下命令来安装这些依赖库:```bashsudoapt-getinst
- DeepSeek强化学习(Reinforcement Learning)基础与实践
Evaporator Core
强化学习#DeepSeek快速入门人工智能python数据库tornado强化学习deepseek
引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,专注于训练智能体(Agent)在环境中通过试错来学习最优策略。与监督学习和无监督学习不同,强化学习通过奖励信号来指导智能体的行为,使其能够在复杂的环境中做出决策。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练强化学习模型。本文将详细介绍如何使用DeepSeek进行强化学习的基础与实践,并通
- GCC 和 G++的基本使用
cuber膜拜
汇编gnuc++
GCC和G++命令GCC和G++命令GCC(GNUC编译器)基本用法常用选项示例G++(GNUC++编译器)基本用法常用选项示例GCC与G++的区别选择使用GCC还是G++C++编译流程1.预处理(Preprocessing)2.编译(Compilation)3.汇编(Assembly)4.链接(Linking)综合示例头文件搜索路径1.引号包含的头文件(`"add.h"`)搜索路径示例2.尖括号
- 架构演进史
三花学编程
架构架构java微服务
软件架构是软件工程的基石,它不仅影响着系统的性能、可维护性和可扩展性,也直接关系到开发团队的效率和项目的成功。随着技术的不断发展和业务需求的变化,软件架构经历了多个阶段的演进。本文将详细探讨这些阶段及其背后的驱动因素。1.单体架构时代1.1定义与特点单体架构是指将所有功能模块打包在一个独立的应用程序中。早期的计算机应用程序大多采用这种架构,所有的代码、数据和资源都集中在一个地方。1.2优点简单性:
- python-leetcode 43.二叉搜索树中第K小的元素
SylviaW08
leetcode算法职场和发展
题目:给定一个二叉搜索树的根节点root,和一个整数k,请设计算法,查找其中第K小的元素(从1开始计数)方法一:中序遍历叉搜索树具有如下性质:结点的左子树只包含小于当前结点的数。结点的右子树只包含大于当前结点的数。所有左子树和右子树自身必须也是二叉搜索树二叉树的中序遍历即按照访问左子树——根结点——右子树的方式遍历二叉树;在访问其左子树和右子树时,我们也按照同样的方式遍历;直到遍历完整棵树。因为二
- python-leetcode 22.相交链表
SylviaW08
leetcode-pythonleetcode算法职场和发展
题目:给两个单链表的头节点heada和headb,请找出并返回两个单链表相交的起始节点。如果两个链表不存在相较节点,返回null。两个链表在C1开始相交。intersectval:相交的起始节点的值,如果不存在相交节点,这一值为0listA:第一个链表listB:第二个链表skipA:在listA从头节点开始,跳到交叉节点的节点数skipB:在listB从头节点开始跳到交叉节点的节点数方法一:哈希
- 跟着小K开始零基础Python量化分析之旅 1: 初入量化江湖 —— Python与量化的第一次邂逅
山海青风
python量化分析
第一章:初入量化江湖——Python与量化的第一次邂逅故事情境在一个热闹的理财交流群里,小K偶然听到有人提起“量化投资”。那一刻,他心中燃起了一种莫名的好奇与憧憬:“量化投资究竟是什么?我真的能用代码来炒股吗?”然而,面对这一连串新奇的名词,小K感到有些茫然,一头雾水。就在他犹豫不决的时候,一位神秘的前辈私信他:“想要在量化江湖中闯出一片天地,首先得打好基础。先从搞定Python和学习如何读取股票
- 从零开始玩转TensorFlow:小明的机器学习故事 3
山海青风
#机器学习机器学习tensorflow人工智能
下面是一篇以小明为主角,尝试用TensorFlow预测校园活动参与率的学习故事。我们会在故事情境中穿插对线性回归和逻辑回归的原理介绍,并附带必要的代码示例,帮助你从零基础理解并动手实践。文章结尾还有简要的分析总结。小明的第一次机器学习实验场景:预测校园活动的参与率小明最近加入了学生会,负责策划校园活动。每次活动都需要准备场地、宣传物料和餐饮,但经常会出现场地过小或准备物资不足等问题。为了让活动准备
- OpenAI 助力数据分析中的模式识别与趋势预测
山海青风
#OpenAI数据分析信息可视化数据挖掘
数据分析师的日常工作中,发现数据中的隐藏模式和预测未来趋势是非常重要的一环。借助OpenAI的强大语言模型(如GPT-4),我们可以轻松完成这些任务,无需深厚的编程基础,也能快速上手。在本文中,我们将通过一个简单的例子,展示如何利用OpenAI模型帮助数据分析师识别模式和预测趋势,尤其是在时间序列预测(如销售、流量等)中的实际应用,并加入数据可视化来更直观地展示分析结果。一、模式识别与趋势预测的重
- vite 开启 gzip压缩
二川bro
前端前端
使用vite如何开启gzip压缩文章目录使用vite如何开启gzip压缩1.引言为什么需要Gzip压缩?Gzip压缩的作用2.Vite项目中的Gzip压缩Vite的基本概念Gzip压缩的原理3.使用Vite插件开启Gzip压缩安装`vite-plugin-compression`配置`vite-plugin-compression`4.实战:在Vite项目中开启Gzip压缩项目初始化安装和配置`v
- 研二自学C++想转码,如何规划才能成功?有什么好的开源项目推荐?
程序员yt
c++开源java
今天给大家分享的是一位粉丝的提问,研二自学C++想转码,如何规划才能成功?有什么好的开源项目推荐?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:你好,我想咨询一下转码相关的问题。我的学历背景是安徽大学本科西安电子科技大学研二在读,目前已经完成了C++基本语法的学习,也完成了两个国外的公开课CS144和6.s081的学习与相关lab的编写。接下来
- 一文速通MySQL
C__C..
mysql数据库
MySQL是一种广泛使用的开源关系型数据库管理系统,它通过SQL(结构化查询语言)来管理和操作数据库。SQL语句主要分为三类:DDL(数据定义语言)、DML(数据操纵语言)和DCL(数据控制语言)。DDL(数据定义语言):功能:用于定义和修改数据库的结构常见语句:查看数据库showdatabases;新建数据库createdatabase数据库名;删除数据库dropdatabase数据库名;查看当
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To git@git.dianrong.com:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to 'git@git.dianron
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。