linux/arch/arm/boot/compressed/head.S 这是ARM-Linux运行的第一个文件,这些代码是一个比较独立的代码包裹器。其作用就是解压Linux内核,并将PC指针跳到内核(vmlinux)的第一条指令。 Bootloader中传入到Linux中的参数总共有三个,Linux中用到的是第二个和第三个。第二个参数是architecture id,第三个是taglist的地址。Architecture id的arm芯片在Linux中一定要唯一。Taglist是bootload向Linux传入的参数列表(详细的解释请参考《booting arm linux.pdf》)。 //程序的入口点 .section ".start", #alloc, #execinstr /* * sort out different calling conventions */ .align start: .type start,#function .rept 8//重复8次下面的指令,也就是空出中断向量表的位置 mov r0, r0//就是nop指令 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader .word start @ absolute load/run zImage address .word _edata @ zImage end address 1: mov r7, r1 @ save architecture ID mov r8, r2 @ save atags pointer #ifndef __ARM_ARCH_2__ /* * Booting from Angel - need to enter SVC mode and disable * FIQs/IRQs (numeric definitions from angel arm.h source). * We only do this if we were in user mode on entry. */ mrs r2, cpsr @ get current mode tst r2, #3 @ not user? bne not_angel mov r0, #0x17 @ angel_SWIreason_EnterSVC swi 0x123456 @ angel_SWI_ARM not_angel: mrs r2, cpsr @ turn off interrupts to orr r2, r2, #0xc0 @ prevent angel from running msr cpsr_c, r2 #else teqp pc, #0x0c000003 @ turn off interrupts #endif 一定要保证当前运行在SVC模式下,否则会跳到swi里面去(为什么?我不清楚,而且我没有处理过这个swi)。然后再关闭irq和fiq。 /* * Note that some cache flushing and other stuff may * be needed here - is there an Angel SWI call for this? */ /* * some architecture specific code can be inserted * by the linker here, but it should preserve r7, r8, and r9. */ 读入地址表。因为我们的代码可以在任何地址执行,也就是位置无关代码(PIC),所以我们需要加上一个偏移量。下面有每一个列表项的具体意义。 GOT表的初值是连接器指定的,当时程序并不知道代码在哪个地址执行。如果当前运行的地址已经和表上的地址不一样,还要修正GOT表。 .text adr r0, LC0 ldmia r0, {r1, r2, r3, r4, r5, r6, ip, sp} subs r0, r0, r1 @ calculate the delta offset @ if delta is zero, we are beq not_relocated @ running at the address we @ were linked at. /* * We're running at a different address. We need to fix * up various pointers: * r5 - zImage base address * r6 - GOT start * ip - GOT end */ add r5, r5, r0 add r6, r6, r0 add ip, ip, r0 /* * If we're running fully PIC === CONFIG_ZBOOT_ROM = n, * we need to fix up pointers into the BSS region. * r2 - BSS start * r3 - BSS end * sp - stack pointer */ add r2, r2, r0 add r3, r3, r0 add sp, sp, r0 修改GOT(全局偏移表)表。根据当前的运行地址,修正该表。 /* * Relocate all entries in the GOT table. */ 1: ldr r1, [r6, #0] @ relocate entries in the GOT add r1, r1, r0 @ table. This fixes up the str r1, [r6], #4 @ C references. cmp r6, ip blo 1b 清BSS段,所有的arm程序都需要做这些的。 not_relocated: mov r0, #0 1: str r0, [r2], #4 @ clear bss str r0, [r2], #4 str r0, [r2], #4 str r0, [r2], #4 cmp r2, r3 blo 1b 正如下面的注释所说,C环境我们已经设置好了。下面我们要打开cache和mmu。为什么要这样做呢?这只是一个解压程序呀?为了速度。那为什么要开mmu呢,而且只是做一个平板式的映射?还是为了速度。如果不开mmu的话,就只能打开icache。因为不开mmu的话就无法实现内存管理,而io区是决不能开dcache的。 /* * The C runtime environment should now be setup * sufficiently. Turn the cache on, set up some * pointers, and start decompressing. */ bl cache_on 是不是要跟读进去呢?对于只是对流程感兴趣的人只是知道打开cache就行了。不过跟进去是很有乐趣的,这就是为什么虽然Linux如此庞大,但仍有人会孜孜不倦的研究它的每一行代码的原因吧。反过来说,对于Linux内核的整体把握更加重要,要不然就成盲人摸象了。还有,想做ARM高手的人可以读Linux下的每一个汇编文件,因为Linux内核用ARM的东西还是比较全的。 mov r1, sp @ malloc space above stack add r2, sp, #0x10000 @ 64k max 对下面这些地址的理解其实还是很麻烦,但有篇文档写得很清楚《About TEXTADDR, ZTEXTADDR, PAGE_OFFSET etc...》。下面程序的意义就是保证解压地址和当前程序的地址不重叠。上面分配了64KB的空间来做解压时的数据缓存。 /* * Check to see if we will overwrite ourselves. * r4 = final kernel address//内核执行的最终实地址 * r5 = start of this image//该程序的首地址 * r2 = end of malloc space (and therefore this image) * We basically want: * r4 >= r2 -> OK * r4 + image length <= r5 -> OK */ cmp r4, r2 bhs wont_overwrite add r0, r4, #4096*1024 @ 4MB largest kernel size cmp r0, r5 bls wont_overwrite 如果空间不够了,只好解压到缓冲区地址后面。调用decompress_kernel进行解压缩,这段代码是用c实现的,和架构无关。 mov r5, r2 @ decompress after malloc space mov r0, r5 mov r3, r7 bl decompress_kernel 完成了解压缩之后,由于空间不够,内核也没有解压到正确的地址,必须通过代码搬移来搬到指定的地址。搬运过程中有可能会覆盖掉现在运行的这段代码,所以必须将有可能会执行到的代码搬运到安全的地方,这里用的是解压缩了的代码的后面。 add r0, r0, #127 bic r0, r0, #127 @ align the kernel length /* * r0 = decompressed kernel length * r1-r3 = unused * r4 = kernel execution address * r5 = decompressed kernel start * r6 = processor ID * r7 = architecture ID * r8 = atags pointer * r9-r14 = corrupted */ add r1, r5, r0 @ end of decompressed kernel adr r2, reloc_start ldr r3, LC1 add r3, r2, r3 1: ldmia r2!, {r9 - r14} @ copy relocation code stmia r1!, {r9 - r14} ldmia r2!, {r9 - r14} stmia r1!, {r9 - r14} cmp r2, r3 blo 1b bl cache_clean_flush//因为有代码搬移,所以必须先清理(clean)清除(flush)cache。 add pc, r5, r0 @ call relocation code decompress_kernel共有4个参数,解压的内核地址、缓存区首地址、缓存区尾地址、和芯片ID,返回解压缩代码的长度。 /* * We're not in danger of overwriting ourselves. Do this the simple way. * * r4 = kernel execution address * r7 = architecture ID */ wont_overwrite: mov r0, r4 mov r3, r7 bl decompress_kernel b call_kernel 针对于不会出现代码覆盖的情况,就简单了。直接解压缩内核并且跳转到首地址运行。call_kernel这个函数我们会在下面分析它。 .type LC0, #object LC0: .word LC0 @ r1 .word __bss_start @ r2 .word _end @ r3 .word zreladdr @ r4 .word _start @ r5 .word _got_start @ r6 .word _got_end @ ip .word user_stack+4096 @ sp LC1: .word reloc_end - reloc_start .size LC0, . - LC0 上面这个就是刚才我们说过的地址表,里面有几个符号的地址定义。LC0是在这里定义的。Zreladdr是在当前目录下的Makfile里定义的。其他的符号是在lds里定义的。 下面我们来分析一下有关cache和mmu的代码。通过这些代码我们可以看到Linux的高手们是如何通过汇编来实现各个ARM处理器的识别,以达到通用的目的。 /* * Turn on the cache. We need to setup some page tables so that we * can have both the I and D caches on. * * We place the page tables 16k down from the kernel execution address, * and we hope that nothing else is using it. If we're using it, we * will go pop! * * On entry, * r4 = kernel execution address * r6 = processor ID * r7 = architecture number * r8 = atags pointer * r9 = run-time address of "start" (???) * On exit, * r1, r2, r3, r9, r10, r12 corrupted * This routine must preserve: * r4, r5, r6, r7, r8 */ .align 5 cache_on: mov r3, #8 @ cache_on function b call_cache_fn 这里涉及到了很多MMU、cache、writebuffer、TLB的操作和协处理器的编程。具体编程的东西,我就不想多说了,可以对这ARM的手册逐行的理解。至于为什么要这样做,熟悉了他们的工作原理后也就不难理解了(《ARM嵌入式系统开发》这本书就有个比较好的说明)。因为这里包含了太多的代码搬运、解压等费时的操作,所以打开cache是有必要的。由于要用到数据cache所以需要对mmu进行配置。为了简单这里制作了一级映射,而且是物理地址和虚拟地址相同的1:1映射。 __setup_mmu: sub r3, r4, #16384 @ Page directory size bic r3, r3, #0xff @ Align the pointer bic r3, r3, #0x3f00 /* * Initialise the page tables, turning on the cacheable and bufferable * bits for the RAM area only. */ mov r0, r3 mov r9, r0, lsr #18 mov r9, r9, lsl #18 @ start of RAM add r10, r9, #0x10000000 @ a reasonable RAM size mov r1, #0x12 orr r1, r1, #3 << 10 add r2, r3, #16384 1: cmp r1, r9 @ if virt > start of RAM orrhs r1, r1, #0x0c @ set cacheable, bufferable cmp r1, r10 @ if virt > end of RAM bichs r1, r1, #0x0c @ clear cacheable, bufferable str r1, [r0], #4 @ 1:1 mapping add r1, r1, #1048576 teq r0, r2 bne 1b 参考下面的注释,如果当前在flash中运行,我们再映射2MB。就算是当前在RAM中执行其实也没关系,只不过是做了重复工作。 /* * If ever we are running from Flash, then we surely want the cache * to be enabled also for our execution instance... We map 2MB of it * so there is no map overlap problem for up to 1 MB compressed kernel. * If the execution is in RAM then we would only be duplicating the above. */ mov r1, #0x1e orr r1, r1, #3 << 10 mov r2, pc, lsr #20 orr r1, r1, r2, lsl #20 add r0, r3, r2, lsl #2 str r1, [r0], #4 add r1, r1, #1048576 str r1, [r0] mov pc, lr __armv4_cache_on: mov r12, lr bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement orr r0, r0, #0x0030 bl __common_cache_on mov r0, #0 mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs mov pc, r12 __common_cache_on: #ifndef DEBUG orr r0, r0, #0x000d @ Write buffer, mmu #endif mov r1, #-1 mcr p15, 0, r3, c2, c0, 0 @ load page table pointer mcr p15, 0, r1, c3, c0, 0 @ load domain access control mcr p15, 0, r0, c1, c0, 0 @ load control register mov pc, lr /* * All code following this line is relocatable. It is relocated by * the above code to the end of the decompressed kernel image and * executed there. During this time, we have no stacks. * * r0 = decompressed kernel length * r1-r3 = unused * r4 = kernel execution address * r5 = decompressed kernel start * r6 = processor ID * r7 = architecture ID * r8 = atags pointer * r9-r14 = corrupted */ 下面这段代码是在解压空间不够的情况下需要重新定位的,具体原因上面已经说明。 .align 5 reloc_start: add r9, r5, r0 debug_reloc_start mov r1, r4 1: .rept 4 ldmia r5!, {r0, r2, r3, r10 - r14} @ relocate kernel stmia r1!, {r0, r2, r3, r10 - r14} .endr cmp r5, r9 blo 1b debug_reloc_end 这是最后一个函数了,这个时候一切实质性的工作已经做完。关闭cache,并跳转到真正的内核入口。 call_kernel: bl cache_clean_flush bl cache_off mov r0, #0 @ must be zero mov r1, r7 @ restore architecture number mov r2, r8 @ restore atags pointer mov pc, r4 @ call kernel /* * Here follow the relocatable cache support functions for the * various processors. This is a generic hook for locating an * entry and jumping to an instruction at the specified offset * from the start of the block. Please note this is all position * independent code. * * r1 = corrupted * r2 = corrupted * r3 = block offset * r6 = corrupted * r12 = corrupted */ 通过下面函数我们可以通过proc_types结构体数组我们可以顺利的找到现在的处理器型号,并且会根据R3的偏移量跳转到相应的函数中。里面涉及到协处理器CP15中c0的操作,如果有疑问,可以参考ARM相关手册。 call_cache_fn: adr r12, proc_types mrc p15, 0, r6, c0, c0 @ get processor ID 1: ldr r1, [r12, #0] @ get value ldr r2, [r12, #4] @ get mask eor r1, r1, r6 @ (real ^ match) tst r1, r2 @ & mask addeq pc, r12, r3 @ call cache function add r12, r12, #4*5 b 1b /* * Table for cache operations. This is basically: * - CPU ID match * - CPU ID mask * - 'cache on' method instruction * - 'cache off' method instruction * - 'cache flush' method instruction * * We match an entry using: ((real_id ^ match) & mask) == 0 * * Writethrough caches generally only need 'on' and 'off' * methods. Writeback caches _must_ have the flush method * defined. */ .type proc_types,#object proc_types: .word 0x41560600 @ ARM6/610 .word 0xffffffe0 b __arm6_cache_off @ works, but slow b __arm6_cache_off mov pc, lr @ b __arm6_cache_on @ untested @ b __arm6_cache_off @ b __armv3_cache_flush .word 0x00000000 @ old ARM ID .word 0x0000f000 mov pc, lr mov pc, lr mov pc, lr .word 0x41007000 @ ARM7/710 .word 0xfff8fe00 b __arm7_cache_off b __arm7_cache_off mov pc, lr .word 0x41807200 @ ARM720T (writethrough) .word 0xffffff00 b __armv4_cache_on b __armv4_cache_off mov pc, lr .word 0x00007000 @ ARM7 IDs .word 0x0000f000 mov pc, lr mov pc, lr mov pc, lr @ Everything from here on will be the new ID system. .word 0x4401a100 @ sa110 / sa1100 .word 0xffffffe0 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush .word 0x6901b110 @ sa1110 .word 0xfffffff0 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush @ These match on the architecture ID .word 0x00020000 @ ARMv4T .word 0x000f0000 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush .word 0x00050000 @ ARMv5TE .word 0x000f0000 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush .word 0x00060000 @ ARMv5TEJ .word 0x000f0000 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush .word 0x00070000 @ ARMv6 .word 0x000f0000 b __armv4_cache_on b __armv4_cache_off b __armv6_cache_flush .word 0 @ unrecognised type .word 0 mov pc, lr mov pc, lr mov pc, lr .size proc_types, . - proc_types /* * Turn off the Cache and MMU. ARMv3 does not support * reading the control register, but ARMv4 does. * * On entry, r6 = processor ID * On exit, r0, r1, r2, r3, r12 corrupted * This routine must preserve: r4, r6, r7 */ .align 5 cache_off: mov r3, #12 @ cache_off function b call_cache_fn //代码略 这里分配了4K的空间用来做堆栈。 reloc_end: .align .section ".stack", "w" user_stack: .space 4096