RNG分析:线性同余法 LCG

古老的LCG(linear congruential generator)代表了最好最朴素的伪随机数产生器算法。主要原因是容易理解,容易实现,而且速度快。

 

LCG 算法数学上基于公式:

X(n+1) = (a * X(n) + c) % m

其中,各系数为:

模m, m > 0
系数a, 0 < a < m
增量c, 0 <= c < m
原始值(种子) 0 <= X(0) < m
其中参数c, m, a比较敏感,或者说直接影响了伪随机数产生的质量。


一般而言,高LCG的m是2的指数次幂(一般2^32或者2^64),因为这样取模操作截断最右的32或64位就可以了。多数编译器的库中使用了该理论实现其伪随机数发生器rand()。

下面是部分编译器使用的各个参数值:

Source m a c rand() / Random(L)的种子位 Numerical Recipes 2^32 1664525 1013904223 Borland C/C++ 2^32 22695477 1 位30..16 in rand(), 30..0 in lrand() glibc (used by GCC) 2^32 1103515245 12345 位30..0 ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++ 2^32 1103515245 12345 位30..16 Borland Delphi, Virtual Pascal 2^32 134775813 1 位63..32 of (seed * L) Microsoft Visual/Quick C/C++ 2^32 214013 2531011 位30..16 Apple CarbonLib 2^31-1 16807 0 见Park–Miller随机数发生器

 

LCG不能用于随机数要求高的场合,例如不能用于Monte Carlo模拟,不能用于加密应用。


LCG有一些严重的缺陷,例如如果LCG用做N维空间的点坐标,这些点最多位于m1/n超平面上(Marsaglia定理),这是由于产生的相继X(n)值的关联所致。


另外一个问题就是如果m设置为2的指数,产生的低位序列周期远远小于整体。
一般而言,输出序列的基数b中最低n位,bk = m (k是某个整数),最大周期bn.
有些场合LCG有很好的应用,例如内存很紧张的嵌入式中,电子游戏控制台用的小整数,使用高位可以胜任。

 

LCG的一种C++实现版本如下:

//************************************************************************ // Copyright (C) 2008 - 2009 Chipset // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //************************************************************************ #ifndef LCRANDOM_HPP_ #define LCRANDOM_HPP_ #include <ctime> class lcrandom { public: explicit lcrandom(size_t s = 0) : seed(s) { if (0 == seed) seed = std::time(0); randomize(); } void reset(size_t s) { seed = s; if (0 == seed) seed = std::time(0); randomize(); } size_t rand() { //returns a random integer in the range [0, -1UL) randomize(); return seed; } double real() { //returns a random real number in the range [0.0, 1.0) randomize(); return (double)(seed) / -1UL; } private: size_t seed; void randomize() { seed = 1103515245UL * seed + 12345UL; } }; class lcrand_help { static lcrandom r; public: lcrand_help() {} void operator()(size_t s) { r.reset(s); } size_t operator()() const { return r.rand(); } double operator()(double) { return r.real(); } }; lcrandom lcrand_help:: r; extern void lcsrand(size_t s) { lcrand_help()(s); } extern size_t lcirand() { return lcrand_help()(); } extern double lcdrand() { return lcrand_help()(1.0); } #endif // LCRANDOM_HPP_

 

如果需要高质量的伪随机数,内存充足(约2kb),Mersenne twister算法是个不错的选择。Mersenne twister产生随机数的质量几乎超过任何LCG。不过一般Mersenne twister的实现使用LCG产生种子。


Mersenne twister是Makoto Matsumoto (松本)和Takuji Nishimura (西村)于1997年开发的伪随机数产生器,基于有限二进制字段上的矩阵线性再生。可以快速产生高质量的伪随机数,修正了古老随机数产生算法的很多缺陷。 Mersenne twister这个名字来自周期长度通常取Mersenne质数这样一个事实。常见的有两个变种Mersenne Twister MT19937和Mersenne Twister MT19937-64。


Mersenne Twister有很多长处,例如:周期2^19937 - 1对于一般的应用来说,足够大了,序列关联比较小,能通过很多随机性测试。
关于Mersenne Twister比较详细的论述请参阅http://www.cppblog.com/Chipset/archive/2009/01/19/72330.html


用Mersenne twister算法实现的伪随机数版本非常多。例如boost库中的高质量快速随机数产生器就是用Mersenne twister算法原理编写的。

 

下面是Mersenne twister的一个C++实现:

//************************************************************************ // This is a slightly modified version of Equamen mersenne twister. // // Copyright (C) 2009 Chipset // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //************************************************************************ #ifndef mtrandom_HPP_ #define mtrandom_HPP_ #include <stddef.h> class mtrandom { public: mtrandom() : left(1) { init(); } explicit mtrandom(size_t seed) : left(1) { init(seed); } mtrandom(size_t* init_key, int key_length) : left(1) { int i = 1, j = 0; int k = N > key_length ? N : key_length; init(); for(; k; --k) { state[i] = (state[i] ^ ((state[i - 1] ^ (state[i - 1] >> 30)) * 1664525UL))+ init_key[j] + j; // non linear state[i] &= 4294967295UL; // for WORDSIZE > 32 machines ++i; ++j; if(i >= N) { state[0] = state[N - 1]; i = 1; } if(j >= key_length) j = 0; } for(k = N - 1; k; --k) { state[i] = (state[i] ^ ((state[i - 1] ^ (state[i - 1] >> 30)) * 1566083941UL)) - i; // non linear state[i] &= 4294967295UL; // for WORDSIZE > 32 machines ++i; if(i >= N) { state[0] = state[N - 1]; i = 1; } } state[0] = 2147483648UL; // MSB is 1; assuring non-zero initial array } void reset(size_t rs) { init(rs); next_state(); } size_t rand() { size_t y; if(0 == --left) next_state(); y = *next++; // Tempering y ^= (y >> 11); y ^= (y << 7) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } double real() { return (double)rand() / -1UL; } // generates a random number on [0,1) with 53-bit resolution double res53() { size_t a = rand() >> 5, b = rand() >> 6; return (a * 67108864.0 + b) / 9007199254740992.0; } private: void init(size_t seed = 19650218UL) { state[0] = seed & 4294967295UL; for(int j = 1; j < N; ++j) { state[j] = (1812433253UL * (state[j - 1] ^ (state[j - 1] >> 30)) + j); // See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. // In the previous versions, MSBs of the seed affect // only MSBs of the array state[]. // 2002/01/09 modified by Makoto Matsumoto state[j] &= 4294967295UL; // for >32 bit machines } } void next_state() { size_t* p = state; int i; for(i = N - M + 1; --i; ++p) *p = (p[M] ^ twist(p[0], p[1])); for(i = M; --i; ++p) *p = (p[M - N] ^ twist(p[0], p[1])); *p = p[M - N] ^ twist(p[0], state[0]); left = N; next = state; } size_t mixbits(size_t u, size_t v) const { return (u & 2147483648UL) | (v & 2147483647UL); } size_t twist(size_t u, size_t v) const { return ((mixbits(u, v) >> 1) ^ (v & 1UL ? 2567483615UL : 0UL)); } static const int N = 624, M = 397; size_t state[N]; size_t left; size_t* next; }; class mtrand_help { static mtrandom r; public: mtrand_help() {} void operator()(size_t s) { r.reset(s); } size_t operator()() const { return r.rand(); } double operator()(double) { return r.real(); } }; mtrandom mtrand_help:: r; extern void mtsrand(size_t s) { mtrand_help()(s); } extern size_t mtirand() { return mtrand_help()(); } extern double mtdrand() { return mtrand_help()(1.0); } #endif // mtrandom_HPP_

 

(注:部分内容摘自:《产生伪随机数两种常用算法》http://bbs.pfan.cn/post-293562.html)

你可能感兴趣的:(算法,Microsoft,Random,Delphi,pascal,Borland)