static void guess_mv(MpegEncContext *s){ uint8_t fixed[s->mb_stride * s->mb_height]; #define MV_FROZEN 3 #define MV_CHANGED 2 #define MV_UNCHANGED 1 const int mb_stride = s->mb_stride; const int mb_width = s->mb_width; const int mb_height= s->mb_height; int i, depth, num_avail; int mb_x, mb_y, mot_step, mot_stride; set_mv_strides(s, &mot_step, &mot_stride); //!< mot_step = 4, mot_stride = s->b4_stride num_avail=0; for(i=0; i<s->mb_num; i++){ const int mb_xy= s->mb_index2xy[ i ]; int f=0; int error= s->error_status_table[mb_xy]; if(IS_INTRA(s->current_picture.mb_type[mb_xy])) f=MV_FROZEN; //intra //FIXME check if(!(error&MV_ERROR)) f=MV_FROZEN; //inter with undamaged MV fixed[mb_xy]= f; if(f==MV_FROZEN) num_avail++; } if((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) || num_avail <= mb_width/2){ //!< 不使用错误隐藏或者宏块可用数少 for(mb_y=0; mb_y<s->mb_height; mb_y++){ for(mb_x=0; mb_x<s->mb_width; mb_x++){ const int mb_xy= mb_x + mb_y*s->mb_stride; if(IS_INTRA(s->current_picture.mb_type[mb_xy])) continue; if(!(s->error_status_table[mb_xy]&MV_ERROR)) continue; //!< mv ok s->mv_dir = s->last_picture.data[0] ? MV_DIR_FORWARD : MV_DIR_BACKWARD; s->mb_intra=0; s->mv_type = MV_TYPE_16X16; s->mb_skipped=0; s->dsp.clear_blocks(s->block[0]); s->mb_x= mb_x; s->mb_y= mb_y; s->mv[0][0][0]= 0; s->mv[0][0][1]= 0; decode_mb(s, 0); } } return; } for(depth=0;; depth++){ int changed, pass, none_left; none_left=1; changed=1; for(pass=0; (changed || pass<2) && pass<10; pass++){ //!< pass和changed用于控制迭代次数:changed || pass < 2,如果经历了pass=0 int mb_x, mb_y; //!< 和pass=1两次迭代后(刚好做完一整帧的错误隐藏),changed仍为0,即实际没有宏块的mv被修正, int score_sum=0; //!< 则没有继续下一轮迭代的必要;pass < 10,控制总迭代次数不超过10次 changed=0; for(mb_y=0; mb_y<s->mb_height; mb_y++){ for(mb_x=0; mb_x<s->mb_width; mb_x++){ const int mb_xy= mb_x + mb_y*s->mb_stride; int mv_predictor[8][2]={{0}}; int ref[8]={0}; int pred_count=0; int j; int best_score=256*256*256*64; int best_pred=0; const int mot_index= (mb_x + mb_y*mot_stride) * mot_step; int prev_x= s->current_picture.motion_val[0][mot_index][0]; int prev_y= s->current_picture.motion_val[0][mot_index][1]; if((mb_x^mb_y^pass)&1) continue; //!< 这句话控制着宏块错误隐藏的顺序,pass=0时,先扫描第一行序号为偶数的宏块, //!< 第二行序号为奇数的宏块,第三行序号为偶数的宏块,以此类推,即每行交错扫描, //!< pass=1时,重新从第一行开始,改为扫描剩余的序号为奇数的宏块,第二行扫描 //!< 序号为偶数的宏块,以此类推... ...(通过实际打印出扫描宏块序号来确定这一扫描顺序) if(fixed[mb_xy]==MV_FROZEN) continue; //!< intra or MV ok assert(!IS_INTRA(s->current_picture.mb_type[mb_xy])); assert(s->last_picture_ptr && s->last_picture_ptr->data[0]); j=0; if(mb_x>0 && fixed[mb_xy-1 ]==MV_FROZEN) j=1; //!< left block if(mb_x+1<mb_width && fixed[mb_xy+1 ]==MV_FROZEN) j=1; //!< right block if(mb_y>0 && fixed[mb_xy-mb_stride]==MV_FROZEN) j=1; //!< top block if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]==MV_FROZEN) j=1; //!< bottom block if(j==0) continue; //!< 至少要有一个邻块可用才继续下面的工作 j=0; if(mb_x>0 && fixed[mb_xy-1 ]==MV_CHANGED) j=1; if(mb_x+1<mb_width && fixed[mb_xy+1 ]==MV_CHANGED) j=1; if(mb_y>0 && fixed[mb_xy-mb_stride]==MV_CHANGED) j=1; if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]==MV_CHANGED) j=1; if(j==0 && pass>1) continue; //!< 邻块可用但其MV没被修改过,且已经进行过一次一整帧的恢复,在这种情况下,即使对该宏块再做一次恢复,结果也肯定与上次一样,故可跳过不做 none_left=0; if(mb_x>0 && fixed[mb_xy-1]){ //!< 保存左邻块的mv mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index - mot_step][0]; mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index - mot_step][1]; ref [pred_count] = s->current_picture.ref_index[0][4*(mb_xy-1)]; pred_count++; } if(mb_x+1<mb_width && fixed[mb_xy+1]){ //!< 保存右邻块的mv mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index + mot_step][0]; mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index + mot_step][1]; ref [pred_count] = s->current_picture.ref_index[0][4*(mb_xy+1)]; pred_count++; } if(mb_y>0 && fixed[mb_xy-mb_stride]){ //!< 保存上邻块的mv mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index - mot_stride*mot_step][0]; mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index - mot_stride*mot_step][1]; ref [pred_count] = s->current_picture.ref_index[0][4*(mb_xy-s->mb_stride)]; pred_count++; } if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]){ //!< //!< 保存下邻块的mv mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index + mot_stride*mot_step][0]; mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index + mot_stride*mot_step][1]; ref [pred_count] = s->current_picture.ref_index[0][4*(mb_xy+s->mb_stride)]; pred_count++; } if(pred_count==0) continue; //!< 至少要有一个邻块的mv可用才继续下面的工作 if(pred_count>1){ int sum_x=0, sum_y=0, sum_r=0; int max_x, max_y, min_x, min_y, max_r, min_r; for(j=0; j<pred_count; j++){ sum_x+= mv_predictor[j][0]; sum_y+= mv_predictor[j][1]; sum_r+= ref[j]; if(j && ref[j] != ref[j-1]) //!< 邻块的参考帧不同 goto skip_mean_and_median; } /* mean */ //!< 平均值 mv_predictor[pred_count][0] = sum_x/j; mv_predictor[pred_count][1] = sum_y/j; ref [pred_count] = sum_r/j; /* median */ //!< 中值 if(pred_count>=3){ min_y= min_x= min_r= 99999; max_y= max_x= max_r=-99999; }else{ min_x=min_y=max_x=max_y=min_r=max_r=0; } for(j=0; j<pred_count; j++){ max_x= FFMAX(max_x, mv_predictor[j][0]); max_y= FFMAX(max_y, mv_predictor[j][1]); max_r= FFMAX(max_r, ref[j]); min_x= FFMIN(min_x, mv_predictor[j][0]); min_y= FFMIN(min_y, mv_predictor[j][1]); min_r= FFMIN(min_r, ref[j]); } mv_predictor[pred_count+1][0] = sum_x - max_x - min_x; mv_predictor[pred_count+1][1] = sum_y - max_y - min_y; ref [pred_count+1] = sum_r - max_r - min_r; if(pred_count==4){ //!< sum_x - max_x - min_x后,如果pred_count为4的话,那么该结果实际为除去最大、最小的两个中间mv,故需要除以2 mv_predictor[pred_count+1][0] /= 2; mv_predictor[pred_count+1][1] /= 2; ref [pred_count+1] /= 2; } pred_count+=2; //!< 平均值、中值计数 } skip_mean_and_median: /* zero MV */ pred_count++; /* last MV */ mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index][0]; mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index][1]; ref [pred_count] = s->current_picture.ref_index[0][4*mb_xy]; pred_count++; s->mv_dir = MV_DIR_FORWARD; s->mb_intra=0; s->mv_type = MV_TYPE_16X16; s->mb_skipped=0; s->dsp.clear_blocks(s->block[0]); s->mb_x= mb_x; s->mb_y= mb_y; for(j=0; j<pred_count; j++){ //!< 遍历所有预测mv,边界匹配 int score=0; uint8_t *src= s->current_picture.data[0] + mb_x*16 + mb_y*16*s->linesize; s->current_picture.motion_val[0][mot_index][0]= s->mv[0][0][0]= mv_predictor[j][0]; s->current_picture.motion_val[0][mot_index][1]= s->mv[0][0][1]= mv_predictor[j][1]; if(ref[j]<0) //predictor intra or otherwise not available continue; decode_mb(s, ref[j]); //!< 基于得到的mv和ref进行解码 if(mb_x>0 && fixed[mb_xy-1]){ //!< left int k; for(k=0; k<16; k++) score += FFABS(src[k*s->linesize-1 ]-src[k*s->linesize ]); } if(mb_x+1<mb_width && fixed[mb_xy+1]){ //!< right int k; for(k=0; k<16; k++) score += FFABS(src[k*s->linesize+15]-src[k*s->linesize+16]); } if(mb_y>0 && fixed[mb_xy-mb_stride]){ //!< top int k; for(k=0; k<16; k++) score += FFABS(src[k-s->linesize ]-src[k ]); } if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]){ //!< bottom int k; for(k=0; k<16; k++) score += FFABS(src[k+s->linesize*15]-src[k+s->linesize*16]); } if(score <= best_score){ // <= will favor the last MV best_score= score; best_pred= j; } } score_sum+= best_score; s->mv[0][0][0]= mv_predictor[best_pred][0]; s->mv[0][0][1]= mv_predictor[best_pred][1]; for(i=0; i<mot_step; i++) for(j=0; j<mot_step; j++){ s->current_picture.motion_val[0][mot_index+i+j*mot_stride][0]= s->mv[0][0][0]; s->current_picture.motion_val[0][mot_index+i+j*mot_stride][1]= s->mv[0][0][1]; } decode_mb(s, ref[best_pred]); //!< 基于前面边界匹配得到的最优mv和ref进行最终的解码 if(s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y){ fixed[mb_xy]=MV_CHANGED; changed++; }else fixed[mb_xy]=MV_UNCHANGED; } } // printf(".%d/%d", changed, score_sum); fflush(stdout); } if(none_left) //!< 只要有一个邻块可用,none_left就会被置0;换句话说,假如none_left仍为1,则说明遍历宏块后,没有一个宏块的邻块可用 return; for(i=0; i<s->mb_num; i++){ int mb_xy= s->mb_index2xy[i]; if(fixed[mb_xy]) fixed[mb_xy]=MV_FROZEN; } // printf(":"); fflush(stdout); } }