(Relax 数论 1.5)POJ 1811 Prime Test(MillRabin模板题+Pollard模板题:判定大素数&&合数分解)

#include <iostream>
#include <cstdio>
#include <ctime>

using namespace std;

typedef long long LL;

const int maxn = 10000;
LL factor[maxn];//用来保存质因子
int tot;//用来记录质因子的个数

const int S = 20;
LL muti_mod(LL a, LL b, LL c) {    //返回(a*b) mod c,a,b,c<2^63
	a %= c;
	b %= c;
	LL ret = 0;
	while (b) {
		if (b & 1) {
			ret += a;
			if (ret >= c) {
				ret -= c;
			}
		}
		a <<= 1;
		if (a >= c) {
			a -= c;
		}
		b >>= 1;
	}
	return ret;
}

LL pow_mod(LL x, LL n, LL mod) {  //返回x^n mod c ,非递归版
	if (n == 1) {
		return x % mod;
	}
	int bit[64], k = 0;
	while (n) {
		bit[k++] = n & 1;
		n >>= 1;
	}
	LL ret = 1;
	for (k = k - 1; k >= 0; k--) {
		ret = muti_mod(ret, ret, mod);
		if (bit[k] == 1) {
			ret = muti_mod(ret, x, mod);
		}
	}
	return ret;
}

bool check(LL a, LL n, LL x, LL t) {   //以a为基,n-1=x*2^t,检验n是不是合数
	LL ret = pow_mod(a, x, n), last = ret;
	for (int i = 1; i <= t; i++) {
		ret = muti_mod(ret, ret, n);
		if (ret == 1 && last != 1 && last != n - 1) {
			return 1;
		}
		last = ret;
	}
	if (ret != 1) {
		return 1;
	}
	return 0;
}

bool Miller_Rabin(LL n) {
	LL x = n - 1, t = 0;
	while ((x & 1) == 0)
		x >>= 1, t++;
	bool flag = 1;
	if (t >= 1 && (x & 1) == 1) {
		for (int k = 0; k < S; k++) {
			LL a = rand() % (n - 1) + 1;
			if (check(a, n, x, t)) {
				flag = 1;
				break;
			}
			flag = 0;
		}
	}
	if (!flag || n == 2) {
		return 0;
	}
	return 1;
}

//以上是大素数的判定模板
//以下是合数分解的模板

LL gcd(LL a, LL b) {
	if (a == 0)
		return 1;
	if (a < 0) {
		return gcd(-a, b);
	}
	while (b) {
		LL t = a % b;
		a = b;
		b = t;
	}
	return a;
}

LL Pollard_rho(LL x, LL c) {
	LL i = 1, x0 = rand() % x, y = x0, k = 2;
	while (1) {
		i++;
		x0 = (muti_mod(x0, x0, x) + c) % x;
		LL d = gcd(y - x0, x);
		if (d != 1 && d != x) {
			return d;
		}
		if (y == x0) {
			return x;
		}
		if (i == k) {
			y = x0;
			k += k;
		}
	}
}

void findfac(LL n) {           //递归进行质因数分解N
	if (!Miller_Rabin(n)) {
		factor[tot++] = n;
		return;
	}
	LL p = n;
	while (p >= n) {
		p = Pollard_rho(p, rand() % (n - 1) + 1);
	}
	findfac(p);
	findfac(n / p);
}

int main() {
	srand(time(NULL));

	int t;
	scanf("%d", &t);
	while (t--) {
		LL n;
		scanf("%lld", &n);

		if (!Miller_Rabin(n)) {
			printf("Prime\n");
		} else {

			tot = 0;
			findfac(n);
			LL ans = n;

			int i;
			for (i = 0; i < tot; ++i) {
				ans = min(ans, factor[i]);
			}

			printf("%lld\n", ans);
		}

	}

	return 0;
}

你可能感兴趣的:((Relax 数论 1.5)POJ 1811 Prime Test(MillRabin模板题+Pollard模板题:判定大素数&&合数分解))