Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2537 Accepted Submission(s): 791
4 6 -4 -1 -1 -2 2 -4 0 2 0 3 5 -2 6 0 0 2 0 -5 -2 2 -2 -1 2 4 0 5 -5 1 -1 3 3 1 3 -1 1 -1 10 -1 -1 -3 2 -4 4 5 2 5 -4 3 -1 4 3 -1 -2 3 4 -2 2
26 20 20 56HintIn the first case, the meeting point is (-1,-2); the second is (0,0), the third is (3,1) and the last is (-2,2)
转载自http://blog.csdn.net/youngyangyang04/article/details/7798252
题意:
给定n个坐标,求其中一个坐标到其他坐标曼哈顿距离之和的最小值。
思路:
x,y分开算,排序之后就是在x轴上可以分别算出每个点到其他距离和sumx,y轴上可以分别算出每个点到其他距离和sumy,对于询问的(x,y),可以二分查找到他在x轴上对应的sumx,y轴上对应sumy,在sumx+sumy就ok啦!!
至于我们怎么找算sumx,sumy,如果挨个算那就又是n^2啦,不好,想一个办法,就是递推先算出第一个点到说有点的距离sumx[1],然后就递推了,因为我们想右递推的过程中,里右面的点越来越进,左面的点越来越远,sumx[i]向sum[i+1]移动,远了左面点的个数*a[i+1]-a[i](从小到大排序的),近了右面点的个数*a[i+1]-a[i],所以递推公式为sumx[i]=sumx[i-1]-(long long)(m-i)*(a[i]-a[i-1])+(long long)i*(a[i]-a[i-1]);注意中间会溢出的
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; #define N 100005 long long sumx[N],sumy[N]; int a[N],b[N],aa[N],bb[N],m; long long find1(int x) { int l=0,r=m-1; while(r>=l){ int mid=(l+r)>>1; if(x>a[mid]) l=mid+1; if(x<a[mid]) r=mid-1; if(x==a[mid]) return sumx[mid]; } return sumx[l]; } long long find2(int x) { int l=0,r=m-1; while(r>=l){ int mid=(l+r)>>1; if(x>b[mid]) l=mid+1; if(x<b[mid]) r=mid-1; if(x==b[mid]) return sumy[mid]; } return sumy[l]; } int main() { int n,x,y; scanf("%d",&n); while(n--){ scanf("%d",&m); for(int i=0;i<m;i++) { scanf("%d%d",&a[i],&b[i]); aa[i]=a[i]; bb[i]=b[i]; sumx[i]=sumy[i]=0; } sort(a,a+m); sort(b,b+m); for(int i=1;i<m;i++){ sumx[0]+=a[i]-a[0]; sumy[0]+=b[i]-b[0]; } for(int i=1;i<m;i++){ sumx[i]=sumx[i-1]-(long long)(m-i)*(a[i]-a[i-1])+(long long)i*(a[i]-a[i-1]); sumy[i]=sumy[i-1]-(long long)(m-i)*(b[i]-b[i-1])+(long long)i*(b[i]-b[i-1]); } long long sum,min1=300000000000000LL; for(int i=0;i<m;i++){ sum=find1(aa[i])+find2(bb[i]); if(sum<min1) min1=sum; } cout<<min1<<endl; } return 0; }