3 2 2 1 3 -1 1 1 1 -1 0
3 2 0
思路:
以一个长度n为5的数串(-10,3,-1,5,4)为例,如下图:
为了简化操作,A[]和Sum[]的存储都从1开始,0下标位置的值都赋为0。
A[]存储数字串以及它的一份拷贝,图中绿色方框为原数据(下标为1~n),黄色方框为拷贝(下标为n~2*n)。那么这个数串的一个序列就是图中红色方框圈起来的n个数,这里称红色方框为滑动窗口。
Sum[]存储一段数字的和,Sum[i]表示,A[1]~A[i]的和。如上图中Sum[3] = -10 + 3 + -1 = -8。
这里设S(i)为:假设滑动窗口的最后一个数的下标为就j,那么j-n+1 <= i <= j,S(i) = A[j-n+1] + A[j-n] + … + A[i]。题中要找满足滑动窗口内所有S(i) >= 0条件的序列,所以只需要找出最小的S(i),如果它的值都大于等于0的话,该序列就满足条件。使用单调递增队列来寻找最小的S(i)。
Sum[i]和S(i)的转化关系为:当前滑动窗口的末尾数的下标为j,S (i) =Sum[i] – Sum[j-n]。
代码:
#include <stdio.h> #define MAXN 1000000 int sum[2*MAXN+5]; //将长度为n的数串复制为两份存储在sum中,下标从1开始 //然后,sum[i]存储数串的前i项和 int n; //数串的长度 int mq[MAXN+5]; //单调递增队列,队列元素为sum数组的下标 int front; //队首指针 int rear; //队尾指针,指向队尾的下一个位置 void InitMQ(void) { front = rear = 0; } bool IsEmpty(void) { return front == rear; } void Push(int i) { while (!IsEmpty() && sum[mq[rear-1]] > sum[i]) { rear--; } mq[rear++] = i; } int Front(void) { return mq[front]; } void Pop(void) { front++; } int main(void) { sum[0] = 0; while (scanf("%d", &n) != EOF) { if (n == 0) { break; } int i; for (i = 1; i <= n; i++) //输入数据,并复制为两份 { scanf("%d", &sum[i]); sum[i+n] = sum[i]; } for (i = 2; i < n*2; i++) //计算前i项和 { sum[i] += sum[i-1]; } InitMQ(); for (i = 1; i < n; i++) { Push(i); } int count = 0; for (i = n; i < n*2; i++) { if (Front() + n - 1 < i) //弹出不在滑动窗口内的数据 { Pop(); } Push(i); if (sum[Front()] - sum[i-n] >= 0) //序列是否满足条件 { count++; } } printf("%d\n", count); } return 0; } /* 5 -3 2 -1 5 3 */