/* * Copyright (c) 2015, 烟台大学计算机与控制工程学院 * All rights reserved. * 文件名称: main.cpp,graph.h,graph.cpp * 作者:巩凯强 * 完成日期:2015年11月28日 * 版本号:codeblocks * * 问题描述: 拓扑排序 * 输入描述: 无 * 程序输出: 见运行结果 */ #include <stdio.h> #include <malloc.h> #define MAXV 100 //最大顶点个数 #define INF 32767 //INF表示∞ #define MaxSize 100 typedef struct { int u; //边的起始顶点 int v; //边的终止顶点 int w; //边的权值 } Edge; typedef int InfoType; //以下定义邻接矩阵类型 typedef struct { int no; //顶点编号 InfoType info; //顶点其他信息,在此存放带权图权值 } VertexType; //顶点类型 typedef struct //图的定义 { int edges[MAXV][MAXV]; //邻接矩阵 int n,e; //顶点数,弧数 VertexType vexs[MAXV]; //存放顶点信息 } MGraph; //图的邻接矩阵类型 //以下定义邻接表类型 typedef struct ANode //弧的结点结构类型 { int adjvex; //该弧的终点位置 struct ANode *nextarc; //指向下一条弧的指针 InfoType info; //该弧的相关信息,这里用于存放权值 } ArcNode; typedef int Vertex; typedef struct Vnode //邻接表头结点的类型 { Vertex data; //顶点信息 int count; //存放顶点入度,只在拓扑排序中用 ArcNode *firstarc; //指向第一条弧 } VNode; typedef VNode AdjList[MAXV]; //AdjList是邻接表类型 typedef struct { AdjList adjlist; //邻接表 int n,e; //图中顶点数n和边数e } ALGraph; //图的邻接表类型 //功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图 //参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针) // n - 矩阵的阶数 // g - 要构造出来的邻接矩阵数据结构 void ArrayToList(int *Arr, int n, ALGraph *&G); void TopSort(ALGraph *G); void DispAdj(ALGraph *G);
#include "graph.h" void ArrayToList(int *Arr, int n, ALGraph *&G) { int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数 ArcNode *p; G=(ALGraph *)malloc(sizeof(ALGraph)); G->n=n; for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值 G->adjlist[i].firstarc=NULL; for (i=0; i<n; i++) //检查邻接矩阵中每个元素 for (j=n-1; j>=0; j--) if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j] { p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p p->adjvex=j; p->info=Arr[i*n+j]; p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p G->adjlist[i].firstarc=p; } G->e=count; } void DispAdj(ALGraph *G) //输出邻接表G { int i; ArcNode *p; for (i=0; i<G->n; i++) { p=G->adjlist[i].firstarc; printf("%3d: ",i); while (p!=NULL) { printf("-->%d/%d ",p->adjvex,p->info); p=p->nextarc; } printf("\n"); } } void TopSort(ALGraph *G) { int i,j; int St[MAXV],top=-1; //栈St的指针为top ArcNode *p; for (i=0; i<G->n; i++) //入度置初值0 G->adjlist[i].count=0; for (i=0; i<G->n; i++) //求所有顶点的入度 { p=G->adjlist[i].firstarc; while (p!=NULL) { G->adjlist[p->adjvex].count++; p=p->nextarc; } } for (i=0; i<G->n; i++) if (G->adjlist[i].count==0) //入度为0的顶点进栈 { top++; St[top]=i; } while (top>-1) //栈不为空时循环 { i=St[top]; top--; //出栈 printf("%d ",i); //输出顶点 p=G->adjlist[i].firstarc; //找第一个相邻顶点 while (p!=NULL) { j=p->adjvex; G->adjlist[j].count--; if (G->adjlist[j].count==0)//入度为0的相邻顶点进栈 { top++; St[top]=j; } p=p->nextarc; //找下一个相邻顶点 } } }
#include "graph.h" int main() { ALGraph *G; int A[7][7]= { {0,0,1,0,0,0,0}, {0,0,0,1,1,0,1}, {0,0,0,1,0,0,0}, {0,0,0,0,1,1,0}, {0,0,0,0,0,0,0}, {0,0,0,0,0,0,0}, {0,0,0,0,0,1,0} }; ArrayToList(A[0], 7, G); DispAdj(G); printf("\n"); printf("拓扑序列:"); TopSort(G); printf("\n"); return 0; }
运行结果:
知识点总结:
(1)从有向图中选择一个没有前驱(即入度为零)的顶点并且输出它。
(2)从图中删去该顶点,并且删去从该定点出发的全部有向边。
(3)重复上述两步,直到图中不再存在没有前驱的顶点为止。
学习心得:
同样也是根据算法在纸上画一画,跟着Debug调试一步一步的往下走,主要的是理解原理。