数据结构---各种树模板 持续更新···

1:Trie 字典树

字典树

又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来节约存储空间,最大限度地减少无谓的字符串比较,查询效率比哈希表高。

它有3个基本性质:根节点不包含字符,除根节点外每一个节点都只包含一个字符。 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。 每个节点的所有子节点包含的字符都不相同。

详细应用见  http://blog.csdn.net/metalseed/article/details/7953262

#include <iostream>  
using namespace std;  
#define MAX 26 //字符集大小  
  
typedef struct TrieNode {  
    int nCount;  
    struct TrieNode *next[MAX];  
}TrieNode;  
  
TrieNode Memory[1000000];  
int allocp =0;  
  
TrieNode *CreateTrieNode() {  
    int i;  
    TrieNode *p;  
    p = &Memory[allocp++];  
    p->nCount = 1;  
    for(i =0 ; i < MAX ; i++) {  
        p->next[i] = NULL;  
    }  
    return p;  
}  
  
void InsertTrie(TrieNode * &pRoot , char*s) {  
    int i, k;  
    TrieNode *p;  
    if(!(p = pRoot)) {  
        p = pRoot = CreateTrieNode();  
    }  
    i = 0;  
    while(s[i]) {  
        k = s[i++] - 'a';  
        if(p->next[k])  
            p->next[k]->nCount++;  
        else  
            p->next[k] = CreateTrieNode();  
        p = p->next[k];  
    }  
}  
/*查询该前缀出现次数*/  
/*若查询该词出现次数 
  则所有的count初始化为0 
  并去除所有对count的操作 
  只在每次InsertTrie末尾加 p->nCount++;  
*/   
int SearchTrie(TrieNode * &pRoot , char*s) {  
    TrieNode *p;  
    int i , k;  
    if(!(p = pRoot)) {  
        return 0;  
    }  
    i = 0;  
    while(s[i]) {  
        k = s[i++] -'a';  
        if(p->next[k] == NULL) return 0;  
        p = p->next[k];  
    }  
    return p->nCount;  
}  
  
int main()  
{  
    TrieNode *ROOT = NULL;  
    InsertTrie(ROOT,"see");  
    InsertTrie(ROOT,"seeda");  
    InsertTrie(ROOT,"seedb");  
    InsertTrie(ROOT,"seeda");  
    cout<<SearchTrie(ROOT,"seeda")<<endl;  
    cout<<SearchTrie(ROOT,"seedb")<<endl;  
    cout<<SearchTrie(ROOT,"see")<<endl;  
    return 0;  
}  




3:BIT 树状数组

1、概述

树状数组(binary indexed tree),是一种设计新颖的数组结构,它能够高效地获取数组中连续n个数的和。概括说,树状数组通常用于解决以下问题:数组{a}中的元素可能不断地被修改,怎样才能快速地获取连续几个数的和?

2、树状数组基本操作

传统数组(共n个元素)的元素修改和连续元素求和的复杂度分别为O(1)和O(n)。树状数组通过将线性结构转换成伪树状结构(线性结构只能逐个扫描元素,而树状结构可以实现跳跃式扫描),使得修改和求和复杂度均为O(lgn),大大提高了整体效率。

详见 : http://blog.csdn.net/metalseed/article/details/7984075   (含2D模板)

#include<iostream>  
#include<algorithm>  
using namespace std;  
  
  
  
/* 1D */     
const int maxn = 10000;    
int tree[maxn],maxID = 0xff/*数组长度,由题定,建树用update*/;    
    
inline void init()    
{    
    memset(tree,0,sizeof(tree));    
}    
    
inline int read(int idx){ /*求前idx项和*/    
    int sum = 0;    
    while (idx > 0){    
        sum += tree[idx];    
        idx -= (idx & -idx);    
    }    
    return sum;    
}    
  
inline int readSingle(int idx){ /*求idx单点值*/  
    int sum = tree[idx];  
    if (idx > 0){  
        int z = idx - (idx & -idx);  
        idx--;   
        while (idx != z){  
            sum -= tree[idx];   
            idx -= (idx & -idx);  
        }  
    }  
    return sum;  
}  
  
inline void update(int idx ,int val){  /*给idx位置叠加val,叠加!*/   
    while (idx <= maxID){    
        tree[idx] += val;    
        idx += (idx & -idx);    
    }    
}   
  
  
  
int main()  
{  
    cout << read(10) << endl;  
    for(int i = 0; i< 10; ++i)  
    {  
        update(i+1,i+1);  
    }  
    update(4,999);  
    cout << read(1) << endl;  
    cout << read(3) << endl;  
      
    cout << readSingle(4) << endl;  
    return 0;  
}  

4:Segment Tree 线段树


成段加C  区间求和

#include <cstdio>  
#include <algorithm>  
using namespace std;  
   
#define lson l , m , rt << 1  
#define rson m + 1 , r , rt << 1 | 1  
#define LL long long  
const int maxn = 111111;  

/* Node Begin */
LL add[maxn<<2];  
LL sum[maxn<<2];  
/* Node End */

void PushUp(int rt) {  
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
}  
void PushDown(int rt,int m) {  
    if (add[rt]) {  
        add[rt<<1] += add[rt];  
        add[rt<<1|1] += add[rt];  
        sum[rt<<1] += add[rt] * (m - (m >> 1));  
        sum[rt<<1|1] += add[rt] * (m >> 1);  
        add[rt] = 0;  
    }  
}  
void build(int l,int r,int rt) {  
    add[rt] = 0;  
    if (l == r) {  
        scanf("%lld",&sum[rt]);  
        return ;  
    }  
    int m = (l + r) >> 1;  
    build(lson);  
    build(rson);  
    PushUp(rt);  
}  
void update(int L,int R,int c,int l,int r,int rt) {  
    if (L <= l && r <= R) {  
        add[rt] += c;  
        sum[rt] += (LL)c * (r - l + 1);  
        return ;  
    }  
    PushDown(rt , r - l + 1);  
    int m = (l + r) >> 1;  
    if (L <= m) update(L , R , c , lson);  
    if (m < R) update(L , R , c , rson);  
    PushUp(rt);  
}  
LL query(int L,int R,int l,int r,int rt) {  
    if (L <= l && r <= R) {  
        return sum[rt];  
    }  
    PushDown(rt , r - l + 1);  
    int m = (l + r) >> 1;  
    LL ret = 0;  
    if (L <= m) ret += query(L , R , lson);  
    if (m < R) ret += query(L , R , rson);  
    return ret;  
}  
int main() {  
    int N , Q;  
    scanf("%d%d",&N,&Q);  
    build(1 , N , 1);  
    while (Q --) {  
        char op[2];  
        int a , b , c;  
        scanf("%s",op);  
        if (op[0] == 'Q') 
		{  
            scanf("%d%d",&a,&b);  
            printf("%lld\n",query(a , b , 1 , N , 1));  
        } 
		else 
		{  
            scanf("%d%d%d",&a,&b,&c);  
            update(a , b , c , 1 , N , 1);  
        }  
    }  
    return 0;  
}  





5:SBT 二叉平衡检索树

http://acm.hdu.edu.cn/showproblem.php?pid=4006


#include <stdio.h>
#include <string.h>
#define MAX 1000010


int n,m;
struct SBT {

	int left,right,size,key;
	void Init() {

		left = right = 0;
		size = 1;
	}
}a[MAX];
int tot,root;


void left_rotate(int &t) {

	int k = a[t].right;
	a[t].right = a[k].left;
	a[k].left = t;
	a[k].size = a[t].size;
	a[t].size = a[a[t].left].size + a[a[t].right].size + 1;
	t = k;
}
void right_rotate(int &t) {

	int k = a[t].left;
	a[t].left = a[k].right;
	a[k].right = t;
	a[k].size = a[t].size;
	a[t].size = a[a[t].left].size + a[a[t].right].size + 1;
	t = k;
}
void maintain(int &t,int flag) {

	if (flag == 0) {

		if (a[a[a[t].left].left].size > a[a[t].right].size) 
			right_rotate(t);
		else if (a[a[a[t].left].right].size > a[a[t].right].size)
			left_rotate(a[t].left),right_rotate(t);
		else return;
	}
	else {

		if (a[a[a[t].right].right].size > a[a[t].left].size)
			left_rotate(t);
		else if (a[a[a[t].right].left].size > a[a[t].left].size)
			right_rotate(a[t].right),left_rotate(t);
		else return;
	}
	maintain(a[t].left,0);
	maintain(a[t].right,1);
	maintain(t,0);
	maintain(t,1);
}
void insert(int &t,int v) {

	if (t == 0)
		t = ++tot,a[t].Init(),a[t].key = v;
	else {

		a[t].size++;
		if (v < a[t].key)
			insert(a[t].left,v);
		else insert(a[t].right,v);
		maintain(t,v>=a[t].key);
	}
}
int del(int &t,int v) {

	if (!t) return 0;
	a[t].size--;

	if (v == a[t].key || v < a[t].key && !a[t].left
		|| v > a[t].key && !a[t].right) {

		if (a[t].left && a[t].right) {

			int p = del(a[t].left,v+1);
			a[t].key = a[p].key;
			return p;
		}
		else {

			int p = t;
			t = a[t].left + a[t].right;
			return p;
		}
	}
	else return del(v<a[t].key?a[t].left:a[t].right,v);
}
int find(int t,int k) {

	if (k <= a[a[t].left].size)
		return find(a[t].left,k);
	if (k > a[a[t].left].size + 1)
		return find(a[t].right,k-a[a[t].left].size-1);
	return a[t].key;
}


int main()
{
	int i,j,k;


	while (scanf("%d%d",&n,&m) != EOF) {

		tot = root = 0;
		char ope[10];
		while (n--) {

			scanf("%s",ope);
			if (ope[0] == 'I') {

				scanf("%d",&k);
				insert(root,k);
			}
			else printf("%d\n",find(root,a[root].size+1-m));
		}
	}
}


6:Splay 伸展树

/*
题意:有N个数字围成一个圈,有M个操作,操作类型有六种:
(1)“add x",从当前指针位置开始的顺时针K2个数加上x。
(2)"reverse",翻转,从当前指针指针位置开始的顺时针的K2个数。
(3)"insert x",在当前指针位置的顺时候方向插入一个数x。
(4)”delete“,删除当前指针所指的数。
(5)"move x”,如果x=1,指针逆时针旋转,如果x=2,顺时针旋转。
(6)“query",查询指针所指向的数的值。
Splay的作法就不说了。
还可以有三个双端队列加两个标记搞定,方法,是第一个双端队列que1维护前K1个数,
第二个que2维护第K1+1到第K2个数,第三个que3维护接下的数,标记add,
表示que1和que2里的数要加上多少,标记head,表示que1是否被翻转过。
Splay(姿势1):
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;

typedef long long LL;
typedef pair<int,int> PII;

#define LL(x)    (ch[x][0])
#define RR(x)    (ch[x][1])
#define Kt       (ch[ ch[Rt][1] ][0])
#define MID(a,b) (a+((b-a)>>1))

const int N=1e6+5;

int n,m,k1,k2;
int a[N/2];

struct SplayTree
{
    int Rt,top;
    int pre[N],sz[N],ch[N][2];

    int key[N],add[N],pos;
    bool flip[N];

    inline void Link(int x,int y,int f)
    {
        pre[x]=y; if(y) ch[y][f]=x;
    }
    inline void Rotate(int x,int f)
    {
        int y=pre[x],z=pre[y];

        PushDown(y); PushDown(x);

        Link(x,z,RR(z)==y);
        Link(ch[x][f],y,!f);
        Link(y,x,f);

        PushUp(y);
    }
    inline void Splay(int x,int goal)
    {
        while(pre[x]!=goal)
        {
            int y=pre[x],z=pre[y];
            int cx=(LL(y)==x),cy=(LL(z)==y);
            if(z==goal) Rotate(x,cx);
            else
            {
                if(cx==cy) Rotate(y,cy);
                else Rotate(x,cx);
                Rotate(x,cy);
            }
        }
        PushUp(x);
        if(goal==0) Rt=x;
    }
    inline void Select(int K,int goal)
    {
        int x=Rt;
        PushDown(x);
        while(1)
        {
            if(sz[LL(x)]>=K) x=LL(x);
            else if(sz[LL(x)]+1==K) break;
            else K-=sz[LL(x)]+1,x=RR(x);
            PushDown(x);
        }
        Splay(x,goal);
    }

    inline void fun_add(int x,int valu)
    {
        add[x]+=valu;
        key[x]+=valu;
    }
    inline void fun_flip(int x)
    {
        flip[x]^=1;
        swap(LL(x),RR(x));
    }
    inline void PushDown(int x)
    {
        if(add[x])
        {
            fun_add(LL(x),add[x]);
            fun_add(RR(x),add[x]);
            add[x]=0;
        }
        if(flip[x])
        {
            fun_flip(LL(x));
            fun_flip(RR(x));
            flip[x]=0;
        }
    }
    inline void PushUp(int x)
    {
        sz[x]=1+sz[LL(x)]+sz[RR(x)];
    }
    inline void Add(int x)
    {
        Select(1,0); Select(k2+2,Rt);
        fun_add(Kt,x);
    }
    inline void Reverse()
    {
        Select(1,0); Select(k1+2,Rt);
        fun_flip(Kt);
    }
    inline void Insert(int x,int pos)
    {
        Select(pos,0); Select(pos+1,Rt);
        addNode(x,Kt,RR(Rt));
        PushUp(RR(Rt)); PushUp(Rt);
    }
    inline int Delete(bool top)
    {
        int valu;
        if(top)
        {
            Select(1,0);    Select(3,Rt);
            valu=key[Kt];
            Kt=0;
            PushUp(RR(Rt)); PushUp(Rt);
        }
        else
        {
            int len=sz[Rt];
            Select(len-2,0);Select(len,Rt);
            valu=key[Kt];
            Kt=0;
            PushUp(RR(Rt)); PushUp(Rt);
        }
        return valu;
    }
    inline void Move(int x)
    {
        if(x==1)
        {
            int valu=Delete(0);
            Insert(valu,1);
        }
        else
        {
            int valu=Delete(1);
            Insert(valu,sz[Rt]-1);
        }
    }
    inline void Query()
    {
        Select(2,0);
        printf("%d\n",key[Rt]);
    }

//    void Debug(){ printf("Rt:%d\n",Rt); Travel(Rt); }
//    void Travel(int x)
//    {
//        if(x==0) return;
//
//        PushDown(x);
//        Travel(LL(x));
//        printf("node:%d,pre:%d,sz:%d,LL:%d,RR:%d,key:%d\n",
//               x,pre[x],sz[x],LL(x),RR(x),key[x]);
//        Travel(RR(x));
//    }

    void addNode(int valu,int &x,int f)
    {
        x=++top;
        pre[x]=f; sz[x]=1; LL(x)=RR(x)=0;

        key[x]=valu; add[x]=flip[x]=0;
    }
    void build(int lft,int rht,int &x,int f)
    {
        if(lft>rht) return;

        int mid=MID(lft,rht);
        addNode(a[mid],x,f);
        build(lft,mid-1,LL(x),x);
        build(mid+1,rht,RR(x),x);
        PushUp(x);
    }
    void init()
    {
        Rt=top=0;
        pre[0]=sz[0]=LL(0)=RR(0)=0;

        addNode(0,Rt,0);    addNode(0,RR(Rt),Rt);
        build(0,n-1,Kt,RR(Rt));
        PushUp(RR(Rt));     PushUp(Rt);
    }
}spt;
int main()
{
    int t_cnt=0;
    while(scanf("%d%d%d%d",&n,&m,&k1,&k2)!=EOF)
    {
        if(n==0&&m==0&&k1==0&&k2==0) break;

        for(int i=0;i<n;i++) scanf("%d",&a[i]);

        spt.init();

        printf("Case #%d:\n",++t_cnt);

        char op[100]; int x;
        while(m--)
        {
            scanf("%s",op);
            if(op[0]=='a')
            {
                scanf("%d",&x); spt.Add(x);
            }
            else if(op[0]=='r') spt.Reverse();
            else if(op[0]=='i')
            {
                scanf("%d",&x); spt.Insert(x,2);
            }
            else if(op[0]=='d') spt.Delete(1);
            else if(op[0]=='m')
            {
                scanf("%d",&x); spt.Move(x);
            }
            else spt.Query();
        }
    }
    return 0;
}


Spaly(姿势2):

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

#define LL(x) (ch[x][0])
#define RR(x) (ch[x][1])
#define Kt    (ch[ ch[Rt][1] ][0])
#define MID(a,b)   (a+((b-a)>>1))

const int N=1e6+5;

int a[N/2];
int n,m,K1,K2,pos;

struct SplayTree
{
    int Rt,top;
    int sz[N],pre[N],ch[N][2];

    bool flip[N];
    int key[N],add[N];

    inline void Link(int x,int y,int f)
    {
        pre[x]=y; if(y) ch[y][f]=x;
    }
    inline void Rotate(int x,int f)
    {
        int y=pre[x],z=pre[y];

        PushDown(y); PushDown(x);
        Link(x,z,RR(z)==y);
        Link(ch[x][f],y,!f);
        Link(y,x,f);
        PushUp(y);
    }
    inline void Splay(int x,int goal)
    {
        while(pre[x]!=goal)
        {
            int y=pre[x],z=pre[y];
            int cx=(LL(y)==x),cy=(LL(z)==y);
            if(z==goal) Rotate(x,cx);
            else
            {
                if(cx==cy) Rotate(y,cy);
                else Rotate(x,cx);
                Rotate(x,cy);
            }
        }
        PushUp(x);
        if(goal==0) Rt=x;
    }
    inline void Select(int K,int goal)
    {
        int x=Rt;
        PushDown(x);
        while(1)
        {
            if(sz[LL(x)]>=K) x=LL(x);
            else if(1+sz[LL(x)]==K) break;
            else K-=sz[LL(x)]+1,x=RR(x);
            PushDown(x);
        }
        Splay(x,goal);
    }

    inline void fun_add(int x,int valu)
    {
        key[x]+=valu;
        add[x]+=valu;
    }
    inline void fun_flip(int x)
    {
        flip[x]^=1;
        swap(LL(x),RR(x));
    }
    inline void PushUp(int x)
    {
        sz[x]=1+sz[LL(x)]+sz[RR(x)];
    }
    inline void PushDown(int x)
    {
        if(add[x])
        {
            fun_add(LL(x),add[x]);
            fun_add(RR(x),add[x]);
            add[x]=0;
        }
        if(flip[x])
        {
            fun_flip(LL(x)); fun_flip(RR(x));
            flip[x]=0;
        }
    }
    inline void Add(int st,int ed,int valu)
    {
        Select(st-1,0); Select(ed+1,Rt);
        fun_add(Kt,valu);
    }
    inline void Reverse(int st,int ed)
    {
        Select(st-1,0); Select(ed+1,Rt);
        fun_flip(Kt);
    }
    inline void Insert(int pos,int valu)
    {
        Select(pos,0);  Select(pos+1,Rt);
        addNode(valu,Kt,RR(Rt));
        PushUp(RR(Rt)); PushUp(Rt);
    }
    inline void Delete(int pos)
    {
        Select(pos-1,0); Select(pos+1,Rt);
        Kt=0;  PushUp(RR(Rt)); PushUp(Rt);
    }
    inline void Query(int pos)
    {
        Select(pos,0);
        printf("%d\n",key[Rt]);
    }
    inline void Move(int len)
    {
        pos-=len;
        Select(1,0);    Select(2+len,Rt);
        int r1=Kt;      Kt=0;
        PushUp(RR(Rt)); PushUp(Rt);

        Select(sz[Rt]-1,0); Select(sz[Rt],Rt);
        Link(r1,RR(Rt),0);
        PushUp(RR(Rt)); PushUp(Rt);
    }

    inline void addNode(int valu,int &x,int f)
    {
        x=++top;

        sz[x]=1; pre[x]=f; LL(x)=RR(x)=0;

        key[x]=valu; add[x]=flip[x]=0;
    }
    void build(int lft,int rht,int &x,int f)
    {
        if(lft>rht) return;

        int mid=MID(lft,rht);
        addNode(a[mid],x,f);
        build(lft,mid-1,LL(x),x);
        build(mid+1,rht,RR(x),x);
        PushUp(x);
    }
    void init()
    {
        Rt=top=0;

        addNode(0,Rt,0); addNode(0,RR(Rt),Rt);

        build(0,n-1,Kt,RR(Rt));
        PushUp(RR(Rt));  PushUp(Rt);
    }

//    void Debug(){ printf("Rt:%d\n",Rt); Travel(Rt); }
//    void Travel(int x)
//    {
//        if(x==0) return;
//        PushDown(x);
//        Travel(LL(x));
//        printf("node:%d,sz:%d,pre:%d,LL:%d,RR:%d,key:%d\n",
//               x,sz[x],pre[x],LL(x),RR(x),key[x]);
//        Travel(RR(x));
//    }
}spt;
void deal(int &pos,int len)
{
    if(pos<=1) pos=len-1;
    if(pos>=len) pos=2;
}
int main()
{
    freopen("in.txt","r",stdin);

    int t_cnt=0;
    while(scanf("%d%d%d%d",&n,&m,&K1,&K2)!=EOF)
    {
        if(n==0&&m==0&&K1==0&&K2==0) break;

        for(int i=0;i<n;i++) scanf("%d",&a[i]);

        spt.init(); pos=2;

        printf("Case #%d:\n",++t_cnt);

        char op[100]; int x;
        while(m--)
        {
            int len=spt.sz[spt.Rt];
            scanf("%s",op);
            if(op[0]=='a')
            {
                scanf("%d",&x);
                if(pos+K2>len) spt.Move(pos+K2-len);
                spt.Add(pos,pos+K2-1,x);
            }
            else if(op[0]=='r')
            {
                if(pos+K1>=len) spt.Move(pos+K1-len);
                spt.Reverse(pos,pos+K1-1);
            }
            else if(op[0]=='i')
            {
                scanf("%d",&x); spt.Insert(pos,x);
            }
            else if(op[0]=='d')
            {
                spt.Delete(pos);
                deal(pos,spt.sz[spt.Rt]);
            }
            else if(op[0]=='m')
            {
                scanf("%d",&x);
                if(x==1) pos--;
                else pos++;
                deal(pos,len);
            }
            else if(op[0]=='q') spt.Query(pos);
//            spt.Debug();
        }
    }
    return 0;
}


/*
Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output

4
55
9
15
http://acm.pku.edu.cn/JudgeOnline/problem?id=3468
区间跟新,区间求和
*/
#include <cstdio>
#define keyTree (ch[ ch[root][1] ][0])
const int maxn = 222222;
struct SplayTree{
	int sz[maxn];
	int ch[maxn][2];
	int pre[maxn];
	int root , top1 , top2;
	int ss[maxn] , que[maxn];
 
	inline void Rotate(int x,int f) {
		int y = pre[x];
		push_down(y);
		push_down(x);
		ch[y][!f] = ch[x][f];
		pre[ ch[x][f] ] = y;
		pre[x] = pre[y];
		if(pre[x]) ch[ pre[y] ][ ch[pre[y]][1] == y ] = x;
		ch[x][f] = y;
		pre[y] = x;
		push_up(y);
	}
	inline void Splay(int x,int goal) {
		push_down(x);
		while(pre[x] != goal) {
			if(pre[pre[x]] == goal) {
				Rotate(x , ch[pre[x]][0] == x);
			} else {
				int y = pre[x] , z = pre[y];
				int f = (ch[z][0] == y);
				if(ch[y][f] == x) {
					Rotate(x , !f) , Rotate(x , f);
				} else {
					Rotate(y , f) , Rotate(x , f);
				}
			}
		}
		push_up(x);
		if(goal == 0) root = x;
	}
	inline void RotateTo(int k,int goal) {//把第k位的数转到goal下边
		int x = root;
		push_down(x);
		while(sz[ ch[x][0] ] != k) {
			if(k < sz[ ch[x][0] ]) {
				x = ch[x][0];
			} else {
				k -= (sz[ ch[x][0] ] + 1);
				x = ch[x][1];
			}
			push_down(x);
		}
		Splay(x,goal);
	}
	inline void erase(int x) {//把以x为祖先结点删掉放进内存池,回收内存
		int father = pre[x];
		int head = 0 , tail = 0;
		for (que[tail++] = x ; head < tail ; head ++) {
			ss[top2 ++] = que[head];
			if(ch[ que[head] ][0]) que[tail++] = ch[ que[head] ][0];
			if(ch[ que[head] ][1]) que[tail++] = ch[ que[head] ][1];
		}
		ch[ father ][ ch[father][1] == x ] = 0;
		pushup(father);
	}
	//以上一般不修改//////////////////////////////////////////////////////////////////////////////
	void debug() {printf("%d\n",root);Treaval(root);}
	void Treaval(int x) {
		if(x) {
			Treaval(ch[x][0]);
			printf("结点%2d:左儿子 %2d 右儿子 %2d 父结点 %2d size = %2d ,val = %2d\n",x,ch[x][0],ch[x][1],pre[x],sz[x],val[x]);
			Treaval(ch[x][1]);
		}
	}
	//以上Debug
 
 
	//以下是题目的特定函数:
	inline void NewNode(int &x,int c) {
		if (top2) x = ss[--top2];//用栈手动压的内存池
		else x = ++top1;
		ch[x][0] = ch[x][1] = pre[x] = 0;
		sz[x] = 1;
 
		val[x] = sum[x] = c;/*这是题目特定函数*/
		add[x] = 0;
	}
 
	//把延迟标记推到孩子
	inline void push_down(int x) {/*这是题目特定函数*/
		if(add[x]) {
			val[x] += add[x];
			add[ ch[x][0] ] += add[x];
			add[ ch[x][1] ] += add[x]; 
			sum[ ch[x][0] ] += (long long)sz[ ch[x][0] ] * add[x];
			sum[ ch[x][1] ] += (long long)sz[ ch[x][1] ] * add[x];
			add[x] = 0;
		}
	}
	//把孩子状态更新上来
	inline void push_up(int x) {	
		sz[x] = 1 + sz[ ch[x][0] ] + sz[ ch[x][1] ];
		/*这是题目特定函数*/
		sum[x] = add[x] + val[x] + sum[ ch[x][0] ] + sum[ ch[x][1] ];
	}
 
	/*初始化*/
	inline void makeTree(int &x,int l,int r,int f) {
		if(l > r) return ;
		int m = (l + r)>>1;
		NewNode(x , num[m]);		/*num[m]权值改成题目所需的*/
		makeTree(ch[x][0] , l , m - 1 , x);
		makeTree(ch[x][1] , m + 1 , r , x);
		pre[x] = f;
		push_up(x);
	}
	inline void init(int n) {/*这是题目特定函数*/
		ch[0][0] = ch[0][1] = pre[0] = sz[0] = 0;
		add[0] = sum[0] = 0;
 
		root = top1 = 0;
		//为了方便处理边界,加两个边界顶点
		NewNode(root , -1);
		NewNode(ch[root][1] , -1);
		pre[top1] = root;
		sz[root] = 2;
 
 
		for (int i = 0 ; i < n ; i ++) scanf("%d",&num[i]);
		makeTree(keyTree , 0 , n-1 , ch[root][1]);
		push_up(ch[root][1]);
		push_up(root);
	}
	/*更新*/
	inline void update( ) {/*这是题目特定函数*/
		int l , r , c;
		scanf("%d%d%d",&l,&r,&c);
		RotateTo(l-1,0);
		RotateTo(r+1,root);		
		add[ keyTree ] += c;
		sum[ keyTree ] += (long long)c * sz[ keyTree ];
	}
	/*询问*/
	inline void query() {/*这是题目特定函数*/
		int l , r;
		scanf("%d%d",&l,&r);
		RotateTo(l-1 , 0);
		RotateTo(r+1 , root);
		printf("%lld\n",sum[keyTree]);
	}
 
 
	/*这是题目特定变量*/
	int num[maxn];
	int val[maxn];
	int add[maxn];
	long long sum[maxn];
}spt;
 
 
int main() {
	int n , m;
	scanf("%d%d",&n,&m);
	spt.init(n);
	while(m --) {
		char op[2];
		scanf("%s",op);
		if(op[0] == 'Q') {
			spt.query();
		} else {
			spt.update();
		}
	}
	return 0;
}





7:动态树


8:斯坦纳树


9:主席树


10:QTree








你可能感兴趣的:(数据结构---各种树模板 持续更新···)