package main import ( "fmt" "tour/tree" ) // Walk walks the tree t sending all values // from the tree to the channel ch. func Walk(t *tree.Tree, ch chan int) { if t.Left != nil { Walk(t.Left, ch) } ch<-t.Value if t.Right != nil { Walk(t.Right, ch) } } // Same determines whether the trees // t1 and t2 contain the same values. func Same(t1, t2 *tree.Tree) bool { ch1:=make(chan int) ch2:=make(chan int) go Walk(t1, ch1) go Walk(t2, ch2) for i:=0; i<10; i++ { if <-ch1 != <-ch2 { return false } } return true } func main() { ch := make(chan int) go Walk(tree.New(1), ch) for i:=0; i<10; i++ { fmt.Println(<-ch) } fmt.Println("Equivalent Binary Trees?", Same(tree.New(1), tree.New(1))) fmt.Println("Equivalent Binary Trees?", Same(tree.New(1), tree.New(2))) }
1. Implement the Walk
function.
2. Test the Walk
function.
The function tree.New(k)
constructs a randomly-structured binary tree holding the values k
, 2k
, 3k
, ..., 10k
.
Create a new channel ch
and kick off the walker:
go Walk(tree.New(1), ch)
Then read and print 10 values from the channel. It should be the numbers 1, 2, 3, ..., 10.
3. Implement the Same
function using Walk
to determine whether t1
andt2
store the same values.
4. Test the Same
function.
Same(tree.New(1), tree.New(1))
should return true, andSame(tree.New(1), tree.New(2))
should return false.