第三节 构造有限元法基本方程
3.1 形成未引入边界的总刚度矩阵、总荷载列阵、总边界列阵
新建类,命名为 ClassCalculation,贴入以下代码:
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.InteropServices; namespace Business { public class ClassCalculation { public Single[,] K = new Single[4, 4];//存放临时单元刚度矩阵 public Single[,] XY;//杆件(起点、终点)节点的坐标 x、y public int rowsBars = ClassBasicInfo.BarsNodes.GetLength(0);//杆件数 public int rowsNodes = ClassBasicInfo.Coordinate.GetLength(0);//节点数 //构造函数取得各杆件x1,x2,y1,y2 public ClassCalculation() { XY = new Single[rowsBars, 4]; for (int i = 0; i < rowsBars; i++) { XY[i, 0] = ClassBasicInfo.Coordinate[ClassBasicInfo.BarsNodes[i, 0] - 1, 0];//起点x XY[i, 1] = ClassBasicInfo.Coordinate[ClassBasicInfo.BarsNodes[i, 0] - 1, 1];//起点y XY[i, 2] = ClassBasicInfo.Coordinate[ClassBasicInfo.BarsNodes[i, 1] - 1, 0];//终点x XY[i, 3] = ClassBasicInfo.Coordinate[ClassBasicInfo.BarsNodes[i, 1] - 1, 1];//终点y } } [DllImport("FORTRANCAL/MatrixCal.dll")] public static extern void UnitStiffnessMatrix(ref Single EA, ref Single x1, ref Single x2, ref Single y1, ref Single y2, ref Single K); //取得整体坐标下的单元刚度矩阵 public Single[,] GetK(int i) { UnitStiffnessMatrix(ref ClassBasicInfo.LinearStiffness[i], ref XY[i, 0], ref XY[i, 2], ref XY[i, 1], ref XY[i, 3], ref K[0,0]); return K; } //取得总刚度矩阵 public void GetTatalStiffnessMatrix() { Single[,] K; for (int i = 0; i < rowsBars; i++) { int A = ClassBasicInfo.BarsNodes[i, 0];//起点编号 int B = ClassBasicInfo.BarsNodes[i, 1];//终点编号 K = this.GetK(i);//取得单元刚度矩阵 //分块进行赋值 //左上块 ClassBasicInfo.TatalStiffnessMatrix[2 * A - 2, 2 * A - 2] += K[0, 0]; ClassBasicInfo.TatalStiffnessMatrix[2 * A - 2, 2 * A - 1] += K[0, 1]; ClassBasicInfo.TatalStiffnessMatrix[2 * A - 1, 2 * A - 2] += K[1, 0]; ClassBasicInfo.TatalStiffnessMatrix[2 * A - 1, 2 * A - 1] += K[1, 1]; //右上块 ClassBasicInfo.TatalStiffnessMatrix[2 * A - 2, 2 * B - 2] += K[0, 2]; ClassBasicInfo.TatalStiffnessMatrix[2 * A - 2, 2 * B - 1] += K[0, 3]; ClassBasicInfo.TatalStiffnessMatrix[2 * A - 1, 2 * B - 2] += K[1, 2]; ClassBasicInfo.TatalStiffnessMatrix[2 * A - 1, 2 * B - 1] += K[1, 3]; //左下块 ClassBasicInfo.TatalStiffnessMatrix[2 * B - 2, 2 * A - 2] += K[2, 0]; ClassBasicInfo.TatalStiffnessMatrix[2 * B - 2, 2 * A - 1] += K[2, 1]; ClassBasicInfo.TatalStiffnessMatrix[2 * B - 1, 2 * A - 2] += K[3, 0]; ClassBasicInfo.TatalStiffnessMatrix[2 * B - 1, 2 * A - 1] += K[3, 1]; //右下块 ClassBasicInfo.TatalStiffnessMatrix[2 * B - 2, 2 * B - 2] += K[2, 2]; ClassBasicInfo.TatalStiffnessMatrix[2 * B - 2, 2 * B - 1] += K[2, 3]; ClassBasicInfo.TatalStiffnessMatrix[2 * B - 1, 2 * B - 2] += K[3, 2]; ClassBasicInfo.TatalStiffnessMatrix[2 * B - 1, 2 * B - 1] += K[3, 3]; } } //取得总荷载列阵(未知支座反力以0代替) public void GetTatalLoads() { for (int i = 0; i < rowsNodes; i++) { ClassBasicInfo.TatalLoads[2 * i] = ClassBasicInfo.Loads[i, 0]; ClassBasicInfo.TatalLoads[2 * i + 1] = ClassBasicInfo.Loads[i, 1]; } } //取得总边界条件 public void GetTatalRestraint() { for (int i = 0; i < rowsNodes; i++) { ClassBasicInfo.TatalRestraint[2 * i] = ClassBasicInfo.Restraint[i, 0]; ClassBasicInfo.TatalRestraint[2 * i + 1] = ClassBasicInfo.Restraint[i, 1]; } } //接口 public void GetAll() { this.GetTatalStiffnessMatrix(); this.GetTatalLoads(); this.GetTatalRestraint(); } } }
subroutine UnitStiffnessMatrix(EA,x1,x2,y1,y2,K) implicit none !dec$ attributes dllexport::UnitStiffnessMatrix !dec$ attributes alias:"UnitStiffnessMatrix"::UnitStiffnessMatrix !dec$ attributes reference::EA,x1,x2,y1,y2,K real(4)::K(4,4) real(4)::EA,x1,x2,y1,y2 real(4)::L real(4)::I real(4)::cosa,sina L = ((x1-x2)**2 + (y1-y2)**2)**0.5 I = EA/L cosa = (x2-x1)/L sina = (y2-y1)/L call InitK(K,I,cosa,sina) end subroutine subroutine InitK(K,I,cos,sin) implicit none real(4)::K(4,4) real(4)::I real(4)::cos,sin K(1,1) = I * (cos**2) K(1,2) = I * (cos*sin) K(1,3) = -1.0 * K(1,1) K(1,4) = -1.0 * K(1,2) K(2,2) = I * (sin**2) K(2,3) = K(1,4) K(2,4) = -1.0 * K(2,2) K(3,3) = K(1,1) K(3,4) = K(1,2) K(4,4) = K(2,2) K(2,1) = K(1,2) K(3,1) = K(1,3) K(3,2) = K(2,3) K(4,1) = K(1,4) K(4,2) = K(2,4) K(4,3) = K(3,4) end subroutine
至此,总刚度矩阵、总荷载列阵、总边界列阵已存入静态数组中。
3.2 引入边界条件,求解方程,得到各节点位移、力
新建类,命名为 ClassBoundaryIn,贴入以下代码:
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.InteropServices; namespace Business { public class ClassBoundaryIn { public Single[,] A; public Single[] x; public Single[] b; int n = ClassBasicInfo.TatalLoads.GetLength(0); int num = 0; public void Init() { for (int i = 0; i < n; i++) { if (ClassBasicInfo.TatalRestraint[i] == false)//自由端 { num = num + 1; } } A = new Single[num, num]; x = new Single[num]; b = new Single[num]; } //整合总刚度矩阵,引入边界条件 public Single[,] GetA() { int j = 0; for (int i = 0; i < n; i++) { if (ClassBasicInfo.TatalRestraint[i] == false)//自由端 { int m = j; for (int k = i; k < n; k++) { if (ClassBasicInfo.TatalRestraint[k] == false) { A[j, m] = ClassBasicInfo.TatalStiffnessMatrix[i, k]; A[m, j] = ClassBasicInfo.TatalStiffnessMatrix[k, i]; m = m + 1; } } j = j + 1; } } return A; } //整合总荷载列阵 public Single[] Getb() { int j = 0; for (int i = 0; i < n; i++) { if (ClassBasicInfo.TatalRestraint[i] == false)//自由端 { b[j] = ClassBasicInfo.TatalLoads[i]; j = j + 1; } } return b; } //取得位移列阵 [DllImport("FORTRANCAL/MatrixCal.dll")] public static extern void MatrixNi(ref Single A, ref int n); public Single[,] GetA_() { MatrixNi(ref A[0, 0], ref num); return A; } [DllImport("FORTRANCAL/MatrixCal.dll")] public static extern void MatrixJie(ref Single A_, ref int n, ref Single b, ref Single x); public Single[] Getx() { MatrixJie(ref this.GetA_()[0, 0], ref num, ref b[0], ref x[0]); return x; } //形成完整总位移列阵 public void GetTatalDisplacement() { int j = 0; for (int i = 0; i < n; i++) { if (ClassBasicInfo.TatalRestraint[i] == false) { ClassBasicInfo.TatalDisplacement[i] = x[j]; j = j + 1; } else { ClassBasicInfo.TatalDisplacement[i] = 0; } } } //形成完整总荷载列阵(包括未知反力) [DllImport("FORTRANCAL/MatrixCal.dll")] public static extern void MatrixChen(ref Single A, ref int n, ref Single b, ref Single x); public void GetTatalLoads() { MatrixChen(ref ClassBasicInfo.TatalStiffnessMatrix[0, 0], ref n, ref ClassBasicInfo.TatalLoads[0], ref ClassBasicInfo.TatalDisplacement[0]); } //接口 public void GetAll() { this.Init(); this.GetA(); this.Getb(); this.Getx(); this.GetTatalDisplacement(); this.GetTatalLoads(); } } }
subroutine MatrixNi(a,num) implicit none !dec$ attributes dllexport::MatrixNi !dec$ attributes alias:"MatrixNi"::MatrixNi !dec$ attributes reference::a,num integer::num real(4)::a(num,num) integer::i,j,k integer::n n = num do k=1,N a(k,k) = 1.d0/a(k,k) do j=1,N if(j/=k) a(j,k) = a(k,k)*a(j,k) end do do i=1,N do j=1,N if(i/=k.and.j/=k) a(j,i) = a(j,i) - a(k,i)*a(j,k) end do if(i/=k) a(k,i) = -a(k,i)*a(k,k) end do end do end subroutine
subroutine MatrixJie(a,num,b,x) implicit none !dec$ attributes dllexport::MatrixJie !dec$ attributes alias:"MatrixJie"::MatrixJie !dec$ attributes reference::a,num,b,x integer::num real(4)::a(num,num) real(4)::b(num) real(4)::x(num) integer::n,i,j n = num do i = 1,N do j = 1,N x(i) = x(i) + a(j,i) * b(j) end do end do end subroutine
subroutine MatrixChen(a,num,b,x) implicit none !dec$ attributes dllexport::MatrixChen !dec$ attributes alias:"MatrixChen"::MatrixChen !dec$ attributes reference::a,num,b,x integer::num real(4)::a(num,num) real(4)::b(num) real(4)::x(num) integer::n,i,j n = num b(:) = 0 do i = 1,n do j = 1,n b(i) = b(i) + a(i,j) * x(j) end do end do end subroutine