【deep learning学习笔记】注释yusugomori的RBM代码 --- cpp文件 -- 模型训练

关键是 CD-k(contrastive_divergence)算法的实现。

// the CD-k algorithm
void RBM::contrastive_divergence (
						int *input,		// the input visiable sample
						double lr,		// the learning rate
						int k			// the k value in CD-k
						) 
{
  // allocate the memory for <v,h>|data, <v,h>|reconstructed
  // the probability expectiion (mean) of the hidden nodes, p(h0|v)
  double *ph_mean = new double[n_hidden];
  // the 0-1 state of the hidden nodes 
  int *ph_sample = new int[n_hidden];
  // the probability expectiion (mean) of the visiable nodes, p(v|h)
  double *nv_means = new double[n_visible];
  // the pointer to the 0-1 state of the visiable nodes
  int *nv_samples = new int[n_visible];
  // the probability expectiion (mean) of the hidden nodes, p(h1|v)
  double *nh_means = new double[n_hidden];
  // the 0-1 state of the hidden nodes 
  int *nh_samples = new int[n_hidden];

  /* CD-k */
  // step 1: get the probability and 0-1 state in the hidden nodes according to 
  // the input from the visiable nodes
  sample_h_given_v(input, ph_mean, ph_sample);

  // step 2: gibbs sample
  // data in visiable node --> p(h0|v) in hidden node --> reconstruct the visiable node p(v|h) --> p(h1|v) in hidden node ...
  for(int step=0; step<k; step++) 
  {
    if(step == 0) 
	{
      gibbs_hvh (ph_sample,		// one input sample from hidden node, h0 -- input
		  nv_means,				// the output probability of visiable nodes -- output
		  nv_samples,			// the calculated 0-1 state of visiable node -- output
		  nh_means,				// the output probability of reconstructed hidden node  h1 -- output
		  nh_samples			// the calculated 0-1 state of reconstructed hidden node h1 -- output
		  );			
    } 
	else 
	{
      gibbs_hvh (nh_samples,	// one input sample from hidden node, h0 -- input
		  nv_means,				// the output probability of visiable nodes -- output
		  nv_samples,			// the calculated 0-1 state of visiable node -- output
		  nh_means,				// the output probability of reconstructed hidden node  h1 -- output
		  nh_samples			// the calculated 0-1 state of reconstructed hidden node h1 -- output
		  );
    }
  }

  // update the value of W
  for(int i=0; i<n_hidden; i++) 
  {
    for(int j=0; j<n_visible; j++) 
	{
		// w[hidden][visible] += learningRate * DeltaW, while DeltaW = <v,h>|data - <v,h>|reconstruct
		// <v,h>|data is the expectation of v_i and h_j given the input data
		// <v,h>|data = ( 0-1 of h0 ) * ( 0-1 in input sample) / the total number of sample
		// <v,h>|reconstruct is the expectation v_i and h_j by the reconstructed visible nodes
		// <v,h>|data = ( 0-1 of h1 ) * ( 0-1 in reconstructed node) / the total number of sample
		W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
    }
	// hiddenBias += learningRate * ( <h>|data - <h>|model )
	//             = learningRate * ( h0 - h1 ) / N
    hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
  }

  for(int i=0; i<n_visible; i++) 
  {
	// visibleBias += learningRate * ( <v>|data - <v>|model )
	//             = learningRate * ( input - reconstructedNode ) / N
    vbias[i] += lr * (input[i] - nv_samples[i]) / N;
  }

  // release the memory for <v,h>|data, <v,h>|reconstructed
  delete[] ph_mean;
  delete[] ph_sample;
  delete[] nv_means;
  delete[] nv_samples;
  delete[] nh_means;
  delete[] nh_samples;
} // contrastive_divergence

void RBM::sample_h_given_v (
				int *v0_sample,	// one input sample from visiable nodes -- input
				double *mean,	// the output probability of hidden nodes -- output
				int *sample		// the calculated 0-1 state of hidden node -- output
				) 
{
	 // iterate all the hidden node
	for(int i=0; i<n_hidden; i++) 
	{
		// calculate the probablity of hidden node given the input sample and 
		// the RBM weight from bottem to top
		mean[i] = propup(v0_sample, W[i], hbias[i]);
		// binomial test to decide the 0-1 state of each hidden node
		sample[i] = binomial(1, mean[i]);
	}
}

void RBM::sample_v_given_h (
				int *h0_sample,	// one input sample from hidden nodes -- input
				double *mean,	// the output probability of visiable nodes -- output
				int *sample		// the calculated 0-1 state of visiable node -- output
				) 
{
	// iterate all the visiable node
	for(int i=0; i<n_visible; i++) 
	{
		// calculate the probablity of visible node given the hidden node sample and 
		// the RBM weight from top to bottem
		mean[i] = propdown(h0_sample, i, vbias[i]);
		// binomial test to decide the 0-1 state of each visiable node
		// this step reconstruct the visiable nodes
		sample[i] = binomial(1, mean[i]);
	}
}

// the returned probability is : p (hi|v) = sigmod ( sum_j(vj * wij) + bi)
double RBM::propup (
				int *v,		// one input sample from visiable node -- input
				double *w,	// the weight W connecting one hidden node to all visible node -- input
				double b	// the bias for this hidden node -- input
				) 
{
	// calculated sum_j(vj * wij) + bi )
	double pre_sigmoid_activation = 0.0;
	for(int j=0; j<n_visible; j++) 
	{
		pre_sigmoid_activation += w[j] * v[j];
	}
	pre_sigmoid_activation += b;
	// sigmod (pre_sigmoid_activation)
	return sigmoid(pre_sigmoid_activation);
}

// the returned probability is : p (vi|h) = sigmod ( sum_j(hj * wij) + ci)
double RBM::propdown(
				int *h,		// one input sample from hidden node -- input
				int i,		// the index of visiable node in the W matrix -- input
				double b	// the bias for this visible node -- input
				) 
{
	// calcualte sum_j(hj * wij) + ci
	double pre_sigmoid_activation = 0.0;
	for(int j=0; j<n_hidden; j++) 
	{
		pre_sigmoid_activation += W[j][i] * h[j];
	}
	pre_sigmoid_activation += b;
	// sigmod (pre_sigmoid_activation)
	return sigmoid(pre_sigmoid_activation);
}

void RBM::gibbs_hvh (
				int *h0_sample,			// one input sample from hidden node, h0 -- input
				double *nv_means,		// the output probability of visiable nodes -- output
				int *nv_samples,		// the calculated 0-1 state of visiable node -- output
                double *nh_means,		// the output probability of reconstructed hidden node  h1 -- output
				int *nh_samples			// the calculated 0-1 state of reconstructed hidden node h1 -- output
				) 
{
	// calculate p(v|h)
	sample_v_given_h(h0_sample, nv_means, nv_samples);
	// calculate p(h|v)
	sample_h_given_v(nv_samples, nh_means, nh_samples);
}

void RBM::reconstruct(int *v, double *reconstructed_v) 
{
	// h[i] = p(h_i|v)
	double *h = new double[n_hidden];
	double pre_sigmoid_activation;

	// calculate p(h|v) given v
	for(int i=0; i<n_hidden; i++) 
	{
		h[i] = propup(v, W[i], hbias[i]);
	}

	// calculate p(v_reconstruct|h)
	for(int i=0; i<n_visible; i++) 
	{
		pre_sigmoid_activation = 0.0;
		for(int j=0; j<n_hidden; j++) 
		{
			pre_sigmoid_activation += W[j][i] * h[j];
		}
		pre_sigmoid_activation += vbias[i];

		reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
	}

	delete[] h;
}


你可能感兴趣的:(【deep learning学习笔记】注释yusugomori的RBM代码 --- cpp文件 -- 模型训练)