OpenCv ORB例子代码

#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/imgproc/imgproc.hpp"
  
using namespace std;
using namespace cv;
  
char* image_filename1 ="apple_vinegar_0.png";
char* image_filename2 ="apple_vinegar_2.png";
  
unsigned int hamdist(unsignedintx, unsignedinty)
{ 
unsigned int dist = 0, val = x ^ y;
  
// Count the number of set bits
while(val)
{ 
++dist; 
val &= val - 1; 
} 
  
returndist;
} 
  
unsigned int hamdist2(unsignedchar* a, unsignedchar* b,size_tsize)
{ 
HammingLUT lut; 
  
unsigned int result;
result = lut((a), (b), size);
return result;
} 
  
void naive_nn_search(vector& keys1, Mat& descp1,
vector& keys2, Mat& descp2,
vector& matches) 
{ 
for(inti = 0; i < (int)keys2.size(); i++){
unsigned int min_dist = INT_MAX;
int min_idx = -1;
unsigned char* query_feat = descp2.ptr(i);
for(int j = 0; j < (int)keys1.size(); j++){
unsigned char* train_feat = descp1.ptr(j);
unsigned int dist =  hamdist2(query_feat, train_feat, 32);
  
if(dist < min_dist){
min_dist = dist; 
min_idx = j; 
} 
} 
  
//if(min_dist <= (unsigned int)(second_dist * 0.8)){
if(min_dist <= 50){
matches.push_back(DMatch(i, min_idx, 0, (float)min_dist));
} 
} 
} 
  
void naive_nn_search2(vector& keys1, Mat& descp1,
vector& keys2, Mat& descp2,
vector& matches) 
{ 
for(int i = 0; i < (int)keys2.size(); i++){
unsigned int min_dist = INT_MAX;
unsigned int sec_dist = INT_MAX;
int min_idx = -1, sec_idx = -1;
unsigned char* query_feat = descp2.ptr(i);
for(intj = 0; j < (int)keys1.size(); j++){
unsigned char* train_feat = descp1.ptr(j);
unsigned int dist =  hamdist2(query_feat, train_feat, 32);
  
if(dist < min_dist){
sec_dist = min_dist;
sec_idx = min_idx;
min_dist = dist; 
min_idx = j; 
}elseif(dist < sec_dist){
sec_dist = dist; 
sec_idx = j; 
} 
} 
  
if(min_dist <= (unsignedint)(sec_dist * 0.8) && min_dist <=50){
//if(min_dist <= 50){
matches.push_back(DMatch(i, min_idx, 0, (float)min_dist));
} 
} 
} 
  
int main(intargc,char* argv[])
{ 
Mat img1 = imread(image_filename1, 0);
Mat img2 = imread(image_filename2, 0);
//GaussianBlur(img1, img1, Size(5, 5), 0);
//GaussianBlur(img2, img2, Size(5, 5), 0);
  
ORB orb1(3000, ORB::CommonParams(1.2, 8));
ORB orb2(100, ORB::CommonParams(1.2, 1));
  
vector keys1, keys2;
Mat descriptors1, descriptors2;
  
orb1(img1, Mat(), keys1, descriptors1,false);
printf("tem feat num: %d\n", keys1.size()); 
  
int64 st, et; 
st = cvGetTickCount();
orb2(img2, Mat(), keys2, descriptors2,false);
et = cvGetTickCount();
printf("orb2 extraction time: %f\n", (et-st)/(double)cvGetTickFrequency()/1000.);
printf("query feat num: %d\n", keys2.size()); 
  
// find matches
vector matches;
  
st = cvGetTickCount();
//for(int i = 0; i < 10; i++){
naive_nn_search2(keys1, descriptors1, keys2, descriptors2, matches);
//} 
et = cvGetTickCount();
  
printf("match time: %f\n", (et-st)/(double)cvGetTickFrequency()/1000.);
printf("matchs num: %d\n", matches.size()); 
  
Mat showImg; 
drawMatches(img2, keys2, img1, keys1, matches, showImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255));
string winName ="Matches";
namedWindow( winName, WINDOW_AUTOSIZE );
imshow( winName, showImg );
waitKey(); 
  
vector 
pt1; 
vector 
pt2; 
  
for(inti = 0; i < (int)matches.size(); i++){
pt1.push_back(Point2f(keys2[matches[i].queryIdx].pt.x, keys2[matches[i].queryIdx].pt.y));
  
pt2.push_back(Point2f(keys1[matches[i].trainIdx].pt.x, keys1[matches[i].trainIdx].pt.y));
} 
  
Mat homo; 
  
st = cvGetTickCount();
homo = findHomography(pt1, pt2, Mat(), CV_RANSAC, 5);
et = cvGetTickCount();
printf("ransac time: %f\n", (et-st)/(double)cvGetTickFrequency()/1000.);
  
printf("homo\n"
"%f %f %f\n"
"%f %f %f\n"
"%f %f %f\n",
homo.at(0,0), homo.at(0,1), homo.at(0,2),
homo.at(1,0), homo.at(1,1), homo.at(1,2),
homo.at(2,0),homo.at(2,1),homo.at(2,2));
  
vector 
reproj; 
reproj.resize(pt1.size());
  
perspectiveTransform(pt1, reproj, homo);
  
Mat diff; 
diff = Mat(reproj) - Mat(pt2);
  
int inlier = 0;
doubleerr_sum = 0;
for(inti = 0; i < diff.rows; i++){ 
float* ptr = diff.ptr(i);
floaterr = ptr[0]*ptr[0] + ptr[1]*ptr[1];
if(err < 25.f){
inlier++; 
err_sum += sqrt(err);
} 
} 
printf("inlier num: %d\n", inlier); 
printf("ratio %f\n", inlier / (float)(diff.rows));
printf("mean reprojection error: %f\n", err_sum / inlier); 
  
return0;
}

#include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> #include <vector> using namespace cv; using namespace std; int main() {  Mat img_1 = imread("D:\\image\\img1.jpg");  Mat img_2 = imread("D:\\image\\img2.jpg");  if (!img_1.data || !img_2.data)  {   cout << "error reading images " << endl;   return -1;  }

 ORB orb;  vector<KeyPoint> keyPoints_1, keyPoints_2;  Mat descriptors_1, descriptors_2;

 orb(img_1, Mat(), keyPoints_1, descriptors_1);  orb(img_2, Mat(), keyPoints_2, descriptors_2);    BruteForceMatcher<HammingLUT> matcher;  vector<DMatch> matches;  matcher.match(descriptors_1, descriptors_2, matches);

 double max_dist = 0; double min_dist = 100;  //-- Quick calculation of max and min distances between keypoints  for( int i = 0; i < descriptors_1.rows; i++ )  {   double dist = matches[i].distance;   if( dist < min_dist ) min_dist = dist;   if( dist > max_dist ) max_dist = dist;  }  printf("-- Max dist : %f \n", max_dist );  printf("-- Min dist : %f \n", min_dist );  //-- Draw only "good" matches (i.e. whose distance is less than 0.6*max_dist )  //-- PS.- radiusMatch can also be used here.  std::vector< DMatch > good_matches;  for( int i = 0; i < descriptors_1.rows; i++ )  {   if( matches[i].distance < 0.6*max_dist )   {    good_matches.push_back( matches[i]);   }  }

 Mat img_matches;  drawMatches(img_1, keyPoints_1, img_2, keyPoints_2,   good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),   vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);  imshow( "Match", img_matches);  cvWaitKey();  return 0; }

你可能感兴趣的:(OpenCv ORB例子代码)