- MATLAB骨架化形态学运算专题详解
本文还有配套的精品资源,点击获取简介:骨架化是一种减少图像复杂度、提取主要结构的技术,在MATLAB中通过bwmorph函数进行。本专题涵盖了骨架化的基本原理、相关函数、实际应用以及如何通过形态学操作如膨胀、腐蚀、开闭运算来优化结果。骨架化在医学图像分析、工业检测和生物图像分析等领域有广泛应用。掌握骨架化技术有助于提升图像处理的效率和准确性。1.骨架化概念与重要性1.1骨架化的定义与基本概念在数字
- 【unitrix】 4.12 通用2D仿射变换矩阵(matrix/types.rs)
liuyuan77
我的unitrix库rust
一、源码这段代码定义了一个通用的2D仿射变换矩阵结构,可用于表示二维空间中的各种线性变换。///通用2D仿射变换矩阵(元素仅需实现Copytrait)//////该矩阵可用于表示二维空间中的任意仿射变换,支持以下应用场景:///1.平面几何转换(平移/旋转/缩放/剪切)///2.颜色空间线性变换(如RGB到YUV转换)///3.带物理单位的量值转换(如像素到毫米的映射)///4.动画系统中的插值变
- 力扣1590. 使数组和能被 P 整除
这一题的难点在于模运算,对模运算足够了解,对式子进行变换就很容易得到结果,本质上还是一道前缀和+哈希表的题这里重点讲一下模运算。常见的模运算的用法(a-b)%k==0等价于a%k=b%k而在这一题中由于多了一个len,(数组的总和)即len-(sum[j]-sum[i])%p=0len%p=(sum[j]-sum[i])%p因为两边都是%p所以可以把%p提出来,对等式进行移项(sum[j]-len
- 【Java基础】一次编译,随处运行的简单原理
秃然想通了
java基础入门java开发语言
【Java基础】一次编译,随处运行的简单原理一句话解释:Java程序就像一个多变的机器人,能根据不同的环境变换外形,但核心始终不变!在Windows上变成.exe在Mac上变成.app在手机上变成.apk但无论它的外形如何变化,它的核心始终是同一个机器人!在我们的计算机中,存在着多种操作系统(如:Windows、Linux、MacOS等)。为了让Java程序能够在不同的操作系统上运行,Java内置
- CST微波工作室学习笔记2 主要特点
raininforest
CST学习硬件工程
概要基于Windows98/Me、WindowsNT4、Windows2000和WindowsXP的图形用户界面快速并能有效使用内存的有限积分(FI)算法由于理想边界拟合技术和薄片技术的采用,性能更加卓越结构建模基于先进ACIS内核的参量化实体建模前端,并附带优异的结构可视化功能。内含多种建模技术,可快速进行结构变换。可通过SAT(如AutoCAD)、IGES、STEP、ProE、CATIA4、C
- 射频核心技术:谐振、平衡与极化解析
百态老人
网络算法
以下是对谐振原理(1/4波长匹配)、Balun设计及极化控制技术的系统性解析,结合专业资料进行多角度论述:一、谐振原理:1/4波长匹配技术1.基本原理1/4波长阻抗变换器通过一段特性阻抗为Z01Z_{01}Z01、长度为信号中心频率对应波长(λ0/4\lambda_0/4λ0/4)的传输线实现匹配。其核心公式为:Z01=Z0⋅RLZ_{01}=\sqrt{Z_0\cdotR_L}Z01=Z0⋅R
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- 数字信号处理(DSP)全方位学习指南
本文还有配套的精品资源,点击获取简介:数字信号处理(DSP)是信息技术的关键部分,涉及多种数字信号的分析与处理技术,广泛应用于多个技术领域。本指南深入探索DSP的集成开发环境(IDE),基础概念,以及专业词汇,旨在帮助读者系统掌握DSP原理和实践技能。内容涵盖DSP集成开发环境CCS的使用、基础知识如傅里叶变换与滤波器设计,以及专业术语的学习。此外,还介绍了DSP在音频、图像处理和通信系统中的实际
- Python和MATLAB数字信号波形和模型模拟
要点Python和MATLAB实现以下波形和模型模拟以给定采样率模拟正弦信号,生成给定参数的方波信号,生成给定参数隔离矩形脉冲,生成并绘制线性调频信号。快速傅里叶变换结果释义:复数离散傅里叶变换、频率仓和快速傅里叶变换移位,逆快速傅里叶变换移位,数值NumPy对比观察FFT移位和逆FFT移位。离散时域表示:余弦信号生成取样,使用FFT频域信号表示,使用FFT计算离散傅里叶变换DFT,获得幅度谱并提
- Python时域信号特征提取技术要点
路怜涯
本文还有配套的精品资源,点击获取简介:在机器学习领域,时域信号特征提取是数据预处理的关键环节,特别是对于时间序列数据。时域信号特征包括信号的基本特性量,如平均值、中值、峰值、谷值、峰谷差、方差、标准差、极值点、峭度与峰度、自相关函数、滑动窗口统计、傅立叶变换和小波分析等。使用Python中的NumPy、Pandas和SciPy库可以帮助我们计算这些特征,并为机器学习模型训练准备数据。本文将介绍如何
- 【点云压缩】Haar小波变换与RAHT自适应区域层级变换
丶契阔
算法
Haar小波小波变换由一堆小波基和其系数组成,小波基又分为母小波(低频的)和父小波(高频的)。常用于二维图形处理的小波变换是Haar小波变换,Haar小波变换具有压缩比、抗干扰、速度快的特点,经过小波变换后的系数数据会变得具有规律性,方便后续处理算法进行压缩,同时一些值较小的分量置0不影响图片整体观感。截取了PCL-AVS-PCC一段小波变换点云压缩的代码voidWaveletCoreTransf
- PyTorch 中 nn.Linear() 参数详解与实战解析(gpt)
草莓奶忻
深度学习pytorchgpt人工智能
PyTorch中nn.Linear()参数详解与实战解析在使用PyTorch构建神经网络时,nn.Linear()是最常用也最基础的模块之一。它用于实现一个全连接层(FullyConnectedLayer),本质上就是对输入进行一次线性变换:y=xAT+by=xA^T+by=xAT+b本文将详细介绍nn.Linear()的参数含义、属性说明、初始化机制,并结合实际代码案例帮助你真正理解它的工作原理
- JS 与 CSS 的交互式开发:打造灵动的网页体验
维他奶糖61
pandas数据库前端
在当今的网页开发领域,静态的网页早已无法满足用户日益增长的交互需求。JavaScript(JS)和层叠样式表(CSS)作为前端开发的两大支柱,它们的强强联合能够创造出令人惊叹的交互式网页效果。从简单的按钮点击变色,到复杂的动画过渡和动态页面布局变换,JS与CSS的交互式开发赋予了网页生命与活力。接下来,就让我们深入探索这一奇妙的领域。理解JS与CSS的分工与协作在开始交互式开发之前,我们需要明确J
- 爪形行列式
CyberMuse
算法
好的!我用一个具体的数值4阶“爪形”矩阵举例,配合一步一步推导,完整展示“列变换消元求行列式”的过程。---#例题计算行列式\[D=\begin{vmatrix}4&2&3&1\\6&5&0&0\\7&0&4&0\\8&0&0&3\end{vmatrix}.\]---#Step1:确认结构-第一行:\(a_0=4,b_1=2,b_2=3,b_3=1\);-从第二行开始主对角为\(a_1=5,a_2
- Matplotlib 库来可视化频谱泄漏和加窗的效果
Mark White
matplotlib
前言很多朋友学习音频技术的时候,不理解这个频谱泄漏是什么,我们这次写个小代码直观地感受一下代码演示:频谱泄漏与加窗我们将生成一个简单的正弦波信号,然后分别用**不加窗(矩形窗)和加窗(汉明窗)**的方式对其进行傅里叶变换,并对比它们的频谱图。你会清晰地看到加窗如何减少了频谱泄漏。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.fftimpo
- AtCoder Grand Contest 039
Owen_Q
搜索图论Atcoder
再战atcoder,误入grand局,赛后才意识到。偶然间发现,一年多前自己也是通过grand局狂涨800+分,甚是巧合A-ConnectionandDisconnection思路:这题就是一个简单的字符串计算问题,子串复制多次后变换最少元素消除连续相同元素。对于连续元素,其实只需要向下取整相间消除即可完成,最后单独统计一下首尾,处理掉复制连接处,再考虑一下所有元素均相同的情况即可。/*Autho
- 基于opencv的鱼群检测和数量统计识别鱼群密度带界面
完整项目点文末名片查看获取一、项目简介本项目旨在通过计算机视觉技术,实现对视频中鱼类数量的自动检测与计数。利用OpenCV库进行图像处理,包括背景减除、形态学操作、轮廓检测等步骤,最终在视频帧中标记出鱼类并统计其数量。该系统可广泛应用于水产养殖、生态监测等领域,有助于提高工作效率和数据准确性。二、环境准备在开始项目之前,需要确保以下环境和工具已安装:Python:推荐使用Python3.6及以上版
- OpenCV CUDA模块设备层-----线性插值函数log()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数用于创建线性插值访问器,支持对GPU内存中的图像数据进行双线性插值采样。主要应用于图像缩放、旋转等几何变换中需要亚像素级精度的场景。为输入图像构造一个基于“双线性插值”的访问器对象LinearInterPtrSz,可以在CUDA核函数中按需访问缩放后的像素值
- CG-23H 超声波风速风向传感器--易风(加热型)
sun15369027572
大数据
产品概述易风超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用发送的声波脉冲,测量接收端的时间或频率(多普勒变换)差别来计算风速和风向。该传感器可以同时测量风速,风向的瞬时数值,支持电流、电压信号输出以及RS485、NB-IoT、LoRa、4G及以太网等传输方式。整机外壳采用ABS材质,具有重量轻、没有移动部件、坚固实用的特点,而且不需维护和现场校准,能同时输出风速和风向。可以与
- PyWavelets
shangjg3
PyTorchpytorch人工智能python
PyWavelets(pywt)是Python中用于小波变换的核心库,提供了丰富的信号处理和图像处理功能。以下是其核心功能的详细介绍:1.小波变换基础(1)离散小波变换(DWT)将信号分解为近似系数(Approximation)和细节系数(Detail)。importpywtimportnumpyasnp#示例信号signal=np.array([1
- 基于OpenCV的银行卡识别
Yang了个羊
OpenCVopencv人工智能计算机视觉
一、设计思路1、预处理银行卡号序列模版,对其进行一系列形态学操作,继而进行轮廓识别,构建与各个轮廓所对应的数字元组。2、对将要识别的银行卡进行灰度处理、二值化、阈值处理,sobel算子边缘检测等预处理,再通过模版匹配方法找出与已知轮廓高度符合的数字。二、代码复现预操作:自定义一个cv_show函数,便于后来的图像展示。#绘图展示defcv_show(name,img):cv2.imshow(nam
- 基础RAG实现,最佳入门选择(七)
人工智能
增强型RAG系统的查询转换采用三种查询转换技术,以提高RAG系统中的检索性能,而无需依赖于像LangChain这样的专门库。通过修改用户查询,我们可以显著提高检索信息的相关性和全面性。关键转换技术1.查询重写:使查询更加具体和详细,以提高搜索精度。2.退步提示:生成更广泛的查询以检索有用的上下文信息。3.子查询分解:将复杂的查询分解成更简单的组件进行全面检索。具体代码实现查询变换相关函数查询重写d
- Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)
闲人编程
图像处理图像处理python计算机视觉FFTDCT傅里叶离散余弦变换
目录Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)一、引言1.1图像处理简介1.2快速傅里叶变换与离散余弦变换简介1.3本文目标与结构二、理论背景与数学原理2.1快速傅里叶变换(FFT)介绍2.2离散余弦变换(DCT)介绍2.3两者的应用领域与区别三、算法实现3.1快速傅里叶变换(FFT)实现3.1.1使用Python实现FFT3.1.2图像的频域处理3.2离散余弦变换
- 信号处理算法:快速傅里叶变换(FFT)_(2).FFT算法的原理与实现
kkchenkx
信号处理技术仿真模拟信号处理算法
FFT算法的原理与实现1.引言快速傅里叶变换(FastFourierTransform,FFT)是一种高效的算法,用于计算离散傅里叶变换(DiscreteFourierTransform,DFT)及其逆变换。DFT在信号处理、图像处理、通信工程等领域中有着广泛的应用,但其计算复杂度为O(N2)O(N^2)O(
- 快速傅里叶变换(FFT)是什么?
Yashar Qian
信号处理快速傅里叶变换
快速傅里叶变换(FFT)是什么?快速傅里叶变换(FFT)本质上是一种极其高效的算法,用来计算**离散傅里叶变换(DFT)**及其逆变换。它是数字信号处理、科学计算和工程应用中最重要的算法之一。要理解FFT,先理解它要解决的问题:离散傅里叶变换(DFT)是什么?DFT全称:**DiscreteFourierTransform(离散傅里叶变换)想象你有一段数字化的信号(比如一段音频采样、图像像素数据、
- 一些针对FOC算法的 Clark/Park变换 和 SVPWM生成 的案例代码
鹿屿二向箔
算法
以下是一些针对FOC算法的Clark/Park变换和SVPWM生成的案例代码,涵盖Python仿真、C语言嵌入式实现和ArduinoSimpleFOC库的示例。代码将保持简洁,并附带关键注释。1.Python仿真示例(1)Clark/Park变换实现importnumpyasnpdefclark_transform(ia,ib,ic):"""Clark变换(幅值不变,k=2/3)"""i_alph
- VC++实现的快速傅里叶变换频谱分析软件
直推小新
本文还有配套的精品资源,点击获取简介:基于VC++和MFC的频谱分析程序通过快速傅里叶变换(FFT)技术,将时域信号转换至频域,实现对导入文本或Excel数据的离散谱分析。用户可通过图形界面轻松导入数据,选择分析选项并查看结果。程序利用FFT高效地计算频域数据,并通过图表展示信号频率成分。此分析工具适用于音频处理、通信、医学成像和机械故障诊断等领域。1.VC++和MFC框架介绍1.1VC++的发展
- Python实现快速傅里叶变换(FFT)
haodawei123
工作总结
importnumpyasnpimportmatplotlib.pyplotasplt#采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采#样频率为1400赫兹(即一秒内有1400个采样点,一样意思的)x=np.linspace(0,1,1400)#设置需要采样的信号,频率分量有180,390和600y=7np.sin(2np.p
- 深入Python:实现FFT与DFT
weixin_42668301
本文还有配套的精品资源,点击获取简介:快速傅里叶变换(FFT)和离散傅里叶变换(DFT)是处理时域信号转换到频域的数字信号处理核心工具。本课程深入介绍FFT与DFT的原理及Python实现,涵盖从基本概念到使用numpy库进行信号处理的实战应用。学生将学习如何使用Python中的numpy库来执行DFT,掌握通过Cooley-Tukey算法实现的FFT来高效处理大型数据集。通过实际案例,理解如何分
- 基于小波变换的数字信号调制识别
yong9990
matlab
基于小波变换的数字信号调制识别,通过matlab实现am_ofdm_classification.m,2926dvbt_table_gen.m,16437guard_interval.m,8441pilot_imag.m,9196pilot_real.m,9308randomization.m,9204sc_ofdm_wavelet.m,3439source.m,8486test_sc1.m,34
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多