图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
离散数学-万字课堂笔记-期末考试-考研复习-北航离散数学1
桃木山人
考研数学离散数学期末
第一章逻辑语言1.1逻辑运算1.2命题逻辑合式公式1.3谓词逻辑合式公式1.4自然语言命题第二章命题逻辑语义2.1命题合式公式语义2.2推论式与等价式的语义2.3变换合式公式的语义2.4命题公式范式2.5等式演算2.6完全集第三章谓词逻辑语义3.1谓词合式公式语义3.2推论关系和相等关系3.3前束范式与斯科伦范式3.4一阶理论语言3.5论域、结构与模型第四章逻辑公理系统4.1形式系统4.2命题逻辑
CCF CSP 第30次(2023.09)(1_坐标变换_C++)(先输入再计算;边输入边计算)
Dream it possible!
CCFCSP认证c++算法CSP
CCFCSP第30次(2023.09)(1_坐标变换_C++)题目描述:输入格式:输出格式:样例输入:样例输出:样例解释:子任务:解题思路:思路一(先输入再计算):思路二(边输入边计算):代码实现代码实现(思路一(先输入再计算)):代码实现(思路一(边输入边计算)):时间限制:1.0秒空间限制:512MiB题目描述:对于平面直角坐标系上的坐标(x,y),小P定义了一个包含n个操作的序列T=(t1,
PyWavelets(pywt)安装与使用指南
贾雁冰
PyWavelets(pywt)安装与使用指南项目地址:https://gitcode.com/gh_mirrors/pyw/pywtPyWavelets是一个用于离散小波变换(DiscreteWaveletTransform,DWT)和连续小波变换(ContinuousWaveletTransform,CWT)的Python库。该库广泛应用于信号处理、图像分析以及数据压缩等领域。以下是基于提供的
参数化曲线——参数三次样条曲线(实例)
Alpha狼霸
线性代数矩阵机器学习算法机器人数学建模数据分析
问题及相关理论给定空间中n+1个数据点pi(i=0,1,...,n)\bm{p}_i(i=0,1,...,n)pi(i=0,1,...,n),如何构造一条通过这些数据点并满足二阶连续的三次样条曲线?参数化曲线——参数三次样条曲线(1)介绍了数据点的参数化方法。参数化曲线——参数三次样条曲线(2)介绍了埃尔米特基形式的三次多项式曲线及其域变换。参数化曲线——参数三次样条曲线(3)推导了满足二阶连续的
CCF认证-202409-02 | 字符串变换
@Mr.stone
算法动态规划线性代数数据结构
题目描述本题涉及字符包括大小写字母(A-Z和a-z)、数字(0-9)和空格共63种。在这个字符集合上,小P定义了一个字符替换函数f(ch),表示将字符ch替换为f(ch)。例如f(a)=b表示将a替换为b,f(b)=0表示将b替换为0。进而可以将其扩展为字符串变换函数F(s),表示对字符串s进行变换,将s中每个字符ch都替换为f(ch)。字符替换函数f可表示为n个字符对(ch1,ch2),即f(c
3.13 YOLO V3
不要不开心了
机器学习pytorch深度学习
今天的内容为YOLO-V3YOLO系列-YOLO-V3,最大的改进就是网络结构,使其更适合小目标检测。-特征做得更细致,融入多持续特征图信息来预测不同规格物体。-先验框更丰富了,3种scale,每种3个规格,一共9种。-softmax改进,预测多标签任务。-多scale-为了能检测到不同大小的物体,设计了3个scale。-scale变换经典方法-左图:图像金字塔;右图:单一的输入。-scale变换
地理信息系统(ArcGIS)在水文水资源、水环境中的应用
科研的力量
水文地质土壤arcgis水文水资源
一ArcGIS:数据管理1.1ArcGIS界面及数据加载1.2ArcGIS常见数据格式1.3基于Geodatabase的数据库构建1.4环境信息的查询与输出1.5文档保存方式二ArcGIS:数据转换2.1常用地图投影介绍2.2投影变换2.3地理坐标转换(北京54、西安80、WGS84及国家2000坐标转换)2.4数据结构转换2.5数据格式转换2.6数据类型转换三ArcGIS:地图制作3.1GIS制
探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
信号处理抽取多项滤波的数学推导与仿真
jz_ddk
信号处理python算法
昨天的《信号处理之插值、抽取与多项滤波》,已经介绍了插值抽取的多项滤率,今天详细介绍多项滤波的数学推导,并附上实战仿真代码。一、数学变换推导1.多相分解的核心思想将FIR滤波器的系数h(n)h(n)h(n)按相位分组,每组对应输入信号的不同抽样相位。通过分相、滤波、重组,实现与原FIR等效的处理。2.数学变换推导FIR滤波器的系统函数可表示为:H(z)=∑n=0N−1h(n)z−nH(z)=\su
用PS将歪掉的人头调整成正向
Zԅ(¯ㅂ¯ԅ)
PS图像处理
1.选择套索工具将人头框选出来2.shift+F6羽化3.Ctrl+J复制出来4.Ctrl+T找到中心调整点(若没有调整点,执行编辑>首选项>工具>勾选在使用'变换'时显示参考点)5.将调整点挪动到下巴位置6.旋转调整头的角度7.调整好后按下回车8.添加蒙版9.选择画笔工具,前景色选择黑色,涂抹穿帮位置。10.Ctrl+H隐藏参考线
【图像检测】基于霍夫变换 Hough变换实现图片车道线检测matlab代码
Matlab科研辅导帮
图像处理matlab计算机视觉算法
1简介本文提出了一种新的基于霍夫变换的复杂情况下车道线检测的算法,这个算法能够成功在夜晚,白天,有阴影,车道线磨损不太严重等复杂情况下检测出车道线.传统的车道线检测算法主要为直接在图像中进行霍夫变换,这种算法实时性差,计算量大.本文提出的算法将先对原图像进行处理,设置ROI区域减少计算量,转换颜色空间并且扫描图像灰度值划分出有阴影的区域进行处理,最后判断最有可能出现车道线的区域,进行霍夫变换检测出
深度学习核心技术深度解析
月落星还在
深度学习深度学习人工智能
一、深度学习的本质与核心思想定义:通过多层非线性变换,自动学习数据层次化表征的机器学习方法核心突破:表征学习:自动发现数据的内在规律,无需人工设计特征端到端学习:直接从原始输入到最终输出,消除中间环节的信息损失分布式表示:通过神经元激活模式的组合,指数级提升表达能力数学本质:f(x)=WLσ(WL−1σ(...σ(W1x+b1)...)+bL−1)+bLf(x)=W_{L}σ(W_{L-1}σ(.
计算机视觉算法实战——图像配准(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.领域简介图像配准(ImageRegistration)是计算机视觉中的一个重要研究方向,旨在将两幅或多幅图像在空间上对齐。这些图像可能来自不同的传感器、不同的时间或不同的视角。图像配准在医学影像、遥感、自动驾驶、机器人导航等领域有着广泛的应用。其核心目标是通过几何变换(如平移、旋转
机器学习背后的数学芝士
小技工丨
机器学习机器学习人工智能
在当今快速发展的科技领域,机器学习作为人工智能的核心技术之一,正在深刻地改变我们的生活和工作方式。本文将了解一下机器学习背后的关键数学芝士。线性代数:数据处理的基础工具向量与矩阵向量是有序数字的集合,常用于表示数据点,例如用户的特征向量可能包括年龄、性别、收入等信息。矩阵则是二维数组,广泛应用于数据集的表示和变换操作。线性变换线性变换描述了向量在空间中的拉伸、压缩或旋转过程。这类变换在数据预处理、
【算法day7】 Z 字形变换 (O2算法思路整理)
舔甜歌姬的EGUMI LEGACY
算法算法
Z字形变换,算法思路整理https://leetcode.cn/problems/zigzag-conversion/将一个给定字符串s根据给定的行数numRows,以从上往下、从左到右进行Z字形排列。比如输入字符串为“PAYPALISHIRING”行数为3时,排列如下:PAHNAPLSIIGYIR之后,你的输出需要从左往右逐行读取,产生出一个新的字符串,比如:“PAHNAPLSIIGYIR”。请
【漫话机器学习系列】129.主成分分析(Principal Component Analysis,PCA)
IT古董
漫话机器学习系列专辑机器学习人工智能
主成分分析(PCA):降维与特征提取的强大工具1.什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常见的数据降维技术,主要用于将高维数据投影到低维空间,同时尽可能保留数据的主要信息。PCA通过线性变换,将原始特征变量转换为一组新的变量,这些新变量被称为主成分(PrincipalComponents)。在这张图中,我们可以看到PCA的核心概
图像处理与机器视觉
Be_auto
图像处理计算机视觉
1.图像处理与机器视觉的概念图像处理(ImageProcessing)是对图像进行分析、增强、变换等操作以改善图像质量或提取有用信息的过程。它通常涉及数字图像处理技术,包括滤波、边缘检测、图像分割、特征提取等。图像处理的目标可以是增强图像的视觉效果,或者使图像更适合于某种特定的机器分析。详细解释图文处理,就像是给照片和文档“化妆”和“打扮”一样。它可不是简单的涂抹或者穿衣搭配,而是需要掌握一系列“
大模型面试--大模型(LLMs)基础面
TAICHIFEI
大模型面试语言模型人工智能
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?目前主流的开源大模型体系有以下几种:1.Transformer系列Transformer模型是深度学习中的一类重要模型,尤其在自然语言处理(NLP)领域。以下是一些主流的Transformer模型:GPT系列GPT-2和GPT-3:由OpenAI开发的生成式预训练变换器模型,用于生成高质量的文本。GPT-Neo和GPT-J:由Eleuthe
数字信号处理之 快速傅里叶变换(FFT)
墨痕_777
信号处理算法
文章目录快速傅里叶变换(FFT)一、直接计算DFT的问题和改善DFT运算效率的基本途径直接计算DFT的问题改善DFT运算效率的基本途径二、按时间抽取(DIT)的FFT算法(库利-图基算法)算法原理按时间抽取的FFT算法与直接计算DFT运算量的比较按时间抽取的FFT算法的特点按时间抽取的FFT算法的若干变体三、按频率抽取(DIF)的FFT算法(桑德-图基算法)算法原理时间抽取算法与频率抽取算法的比较
学习笔记 -《量子计算与编程入门》- 量子程序
诸葛思颖
量子计算与编程入门机器学习
文章目录1量子计算原理1.1酉变换1.2矩阵的指数函数1.3单量子比特逻辑门1.3.1泡利矩阵1.3.2常见逻辑门以及含义·Hadamard(H)门·Pauli-X门·Pauli-Y门·Pauli-Z门·旋转门(rotationoperators)1.4多量子比特逻辑门·控制非门(Control-NOT)(CNOT门)·控制相位门(Controlledphasegate)(CR/CPhase门)·
人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
旋翼机自主着陆-主要技术难点
兜兜有糖_DC
位姿测量无人机智能控制UAVlanding自动计算机视觉深度学习算法
搜索阶段:远距离:目标为几个像素,并且淹没在环境里完全没有任何目标或目标偶尔出现,如何进行导航中远距离目标部分容易被遮挡,如何进行目标检测在光线条件较差的环境下,目标检测出现误判和无法工作的情况近距离目标在视场中占据较大部分,飞机的剧烈姿态变换容易引起目标丢失受到飞机震动和相机抖动限制,特征点提取误差较大,位姿解算精度不高当前解决方案:1.依靠GPS、RTK等设备进行目标追踪存在与目标的通信特定的
主流加解密算法全景解析:对称、非对称与哈希算法详解
JT-999
网络哈希算法网络算法
主流加解密算法通常分为以下三大类,每类都有其独特的特点和应用场景,下面我们详细介绍这三类算法的原理、优势、缺陷以及典型应用场景:1.对称加密算法原理对称加密算法是指加密和解密都使用同一个密钥。发送方和接收方事先共享一个秘密密钥,利用这个密钥将明文转换为密文,加密后的数据只有用相同的密钥才能解密恢复原文。其基本过程通常包括:明文分块(如果是分组加密算法);对每个数据块进行一系列变换(如置换、替换、异
辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多