OpenCV的机器学习类定义在ml.hpp文件中,基础类是CvStatModel,其他各种分类器从这里继承而来。
今天研究CvNormalBayesClassifier分类器。
在ml.hpp中有以下类定义:
class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel { public: CV_WRAP CvNormalBayesClassifier(); virtual ~CvNormalBayesClassifier(); CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0 ); virtual bool train( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false ); virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const; CV_WRAP virtual void clear(); CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() ); CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), bool update=false ); CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const; virtual void write( CvFileStorage* storage, const char* name ) const; virtual void read( CvFileStorage* storage, CvFileNode* node ); protected: int var_count, var_all; CvMat* var_idx; CvMat* cls_labels; CvMat** count; CvMat** sum; CvMat** productsum; CvMat** avg; CvMat** inv_eigen_values; CvMat** cov_rotate_mats; CvMat* c; };
此类使用方法如下:(引用别人的代码,忘记出处了,非常抱歉这个。。。)
//openCV中贝叶斯分类器的API函数用法举例 //运行环境:win7 + VS2005 + openCV2.4.5 #include "global_include.h" using namespace std; using namespace cv; //10个样本特征向量维数为12的训练样本集,第一列为该样本的类别标签 double inputArr[10][13] = { 1,0.708333,1,1,-0.320755,-0.105023,-1,1,-0.419847,-1,-0.225806,0,1, -1,0.583333,-1,0.333333,-0.603774,1,-1,1,0.358779,-1,-0.483871,0,-1, 1,0.166667,1,-0.333333,-0.433962,-0.383562,-1,-1,0.0687023,-1,-0.903226,-1,-1, -1,0.458333,1,1,-0.358491,-0.374429,-1,-1,-0.480916,1,-0.935484,0,-0.333333, -1,0.875,-1,-0.333333,-0.509434,-0.347032,-1,1,-0.236641,1,-0.935484,-1,-0.333333, -1,0.5,1,1,-0.509434,-0.767123,-1,-1,0.0534351,-1,-0.870968,-1,-1, 1,0.125,1,0.333333,-0.320755,-0.406393,1,1,0.0839695,1,-0.806452,0,-0.333333, 1,0.25,1,1,-0.698113,-0.484018,-1,1,0.0839695,1,-0.612903,0,-0.333333, 1,0.291667,1,1,-0.132075,-0.237443,-1,1,0.51145,-1,-0.612903,0,0.333333, 1,0.416667,-1,1,0.0566038,0.283105,-1,1,0.267176,-1,0.290323,0,1 }; //一个测试样本的特征向量 double testArr[]= { 0.25,1,1,-0.226415,-0.506849,-1,-1,0.374046,-1,-0.83871,0,-1 }; int _tmain(int argc, _TCHAR* argv[]) { Mat trainData(10, 12, CV_32FC1);//构建训练样本的特征向量 for (int i=0; i<10; i++) { for (int j=0; j<12; j++) { trainData.at<float>(i, j) = inputArr[i][j+1]; } } Mat trainResponse(10, 1, CV_32FC1);//构建训练样本的类别标签 for (int i=0; i<10; i++) { trainResponse.at<float>(i, 0) = inputArr[i][0]; } CvNormalBayesClassifier nbc; bool trainFlag = nbc.train(trainData, trainResponse);//进行贝叶斯分类器训练 if (trainFlag) { cout<<"train over..."<<endl; nbc.save("normalBayes.txt"); } else { cout<<"train error..."<<endl; system("pause"); exit(-1); } CvNormalBayesClassifier testNbc; testNbc.load("normalBayes.txt"); Mat testSample(1, 12, CV_32FC1);//构建测试样本 for (int i=0; i<12; i++) { testSample.at<float>(0, i) = testArr[i]; } float flag = testNbc.predict(testSample);//进行测试 cout<<"flag = "<<flag<<endl; system("pause"); return 0; }
两步走:
1.调用train函数训练分类器;
2.调用predict函数,判定测试样本的类别。
以上示例代码还延时了怎样使用save和load函数,使得训练好的分类器可以保存在文本中。
接下来,看CvNormalBayesClassifier类的无参数初始化:
CvNormalBayesClassifier::CvNormalBayesClassifier() { var_count = var_all = 0; var_idx = 0; cls_labels = 0; count = 0; sum = 0; productsum = 0; avg = 0; inv_eigen_values = 0; cov_rotate_mats = 0; c = 0; default_model_name = "my_nb"; }还有另一种带参数的初始化形式:
CvNormalBayesClassifier::CvNormalBayesClassifier( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx ) { var_count = var_all = 0; var_idx = 0; cls_labels = 0; count = 0; sum = 0; productsum = 0; avg = 0; inv_eigen_values = 0; cov_rotate_mats = 0; c = 0; default_model_name = "my_nb"; train( _train_data, _responses, _var_idx, _sample_idx ); }可见,带参数形式糅合了类的初始化和train函数。
另外,以Mat参数形式的对应函数版本,功能是一致的,只不过为了体现2.0以后版本的C++特性罢了。如下:
CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() ); CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), bool update=false ); CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const;
下面开始分析train函数,分析CvMat格式参数的train函数,即:
bool train( const CvMat* trainData, const CvMat* responses,const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false );
在进入该函数之前,还要先回头看看CvNormalBayesClassifier类有哪些数据成员:
protected: int var_count, var_all; //每个样本的特征维数、即变量数目,或者说trainData的列数目(在varIdx=0时) CvMat* var_idx; //特征子集的索引,可能特征数目为100,但是只用其中一部分训练 CvMat* cls_labels; //类别数目 CvMat** count; //count[0...(classNum-1)],每个元素是一个CvMat(rows=1,cols=var_count)指针,代表训练数据中每一类的某个特征的数目 CvMat** sum; //sum[0...(classNum-1)],每个元素是一个CvMat(rows=1,cols=var_count)指针,代表训练数据中每一类的某个特征的累加和 CvMat** productsum; //productsum[0...(classNum-1)],每个元素是一个CvMat(rows=cols=var_count)指针,存储类内特征相关矩阵 CvMat** avg; //avg[0...(classNum-1)],每个元素是一个CvMat(rows=1,cols=var_count)指针,代表训练数据中每一类的某个特征的平均值 CvMat** inv_eigen_values;//inv_eigen_values[0...(classNum-1)],每个元素是一个CvMat(rows=1,cols=var_count)指针,代表训练数据中每一类的某个特征的特征值的倒数 CvMat** cov_rotate_mats; //特征变量的协方差矩阵经过SVD奇异值分解后得到的特征向量矩阵 CvMat* c;
bool CvNormalBayesClassifier::train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, bool update ) { const float min_variation = FLT_EPSILON; bool result = false; CvMat* responses = 0; const float** train_data = 0; CvMat* __cls_labels = 0; CvMat* __var_idx = 0; CvMat* cov = 0; CV_FUNCNAME( "CvNormalBayesClassifier::train" ); __BEGIN__; int cls, nsamples = 0, _var_count = 0, _var_all = 0, nclasses = 0; int s, c1, c2; const int* responses_data; //1.整理训练数据 CV_CALL( cvPrepareTrainData( 0, _train_data, CV_ROW_SAMPLE, _responses, CV_VAR_CATEGORICAL, _var_idx, _sample_idx, false, &train_data, &nsamples, &_var_count, &_var_all, &responses, &__cls_labels, &__var_idx )); if( !update ) //如果是初始训练数据 { const size_t mat_size = sizeof(CvMat*); size_t data_size; clear(); var_idx = __var_idx; cls_labels = __cls_labels; __var_idx = __cls_labels = 0; var_count = _var_count; var_all = _var_all; nclasses = cls_labels->cols; data_size = nclasses*6*mat_size; CV_CALL( count = (CvMat**)cvAlloc( data_size )); memset( count, 0, data_size ); //count[cls]存储第cls类每个属性变量个数 sum = count + nclasses;//sum[cls]存储第cls类每个属性取值的累加和 productsum = sum + nclasses;//productsum[cls]存储第cls类的协方差矩阵的乘积项sum(XiXj),cov(Xi,Xj)=sum(XiXj)-sum(Xi)E(Xj) avg = productsum + nclasses;//avg[cls]存储第cls类的每个变量均值 inv_eigen_values= avg + nclasses;//inv_eigen_values[cls]存储第cls类的协方差矩阵的特征值 cov_rotate_mats = inv_eigen_values + nclasses;//存储第cls类的矩阵的特征值对应的特征向量 CV_CALL( c = cvCreateMat( 1, nclasses, CV_64FC1 )); for( cls = 0; cls < nclasses; cls++ ) //对所有类别 { CV_CALL(count[cls] = cvCreateMat( 1, var_count, CV_32SC1 )); CV_CALL(sum[cls] = cvCreateMat( 1, var_count, CV_64FC1 )); CV_CALL(productsum[cls] = cvCreateMat( var_count, var_count, CV_64FC1 )); CV_CALL(avg[cls] = cvCreateMat( 1, var_count, CV_64FC1 )); CV_CALL(inv_eigen_values[cls] = cvCreateMat( 1, var_count, CV_64FC1 )); CV_CALL(cov_rotate_mats[cls] = cvCreateMat( var_count, var_count, CV_64FC1 )); CV_CALL(cvZero( count[cls] )); CV_CALL(cvZero( sum[cls] )); CV_CALL(cvZero( productsum[cls] )); CV_CALL(cvZero( avg[cls] )); CV_CALL(cvZero( inv_eigen_values[cls] )); CV_CALL(cvZero( cov_rotate_mats[cls] )); } } else //如果是更新训练数据 { // check that the new training data has the same dimensionality etc. if( _var_count != var_count || _var_all != var_all || !((!_var_idx && !var_idx) || (_var_idx && var_idx && cvNorm(_var_idx,var_idx,CV_C) < DBL_EPSILON)) ) CV_ERROR( CV_StsBadArg, "The new training data is inconsistent with the original training data" ); if( cls_labels->cols != __cls_labels->cols || cvNorm(cls_labels, __cls_labels, CV_C) > DBL_EPSILON ) CV_ERROR( CV_StsNotImplemented, "In the current implementation the new training data must have absolutely " "the same set of class labels as used in the original training data" ); nclasses = cls_labels->cols; } responses_data = responses->data.i; CV_CALL( cov = cvCreateMat( _var_count, _var_count, CV_64FC1 )); //2.处理训练数据,计算每一类的 // process train data (count, sum , productsum) for( s = 0; s < nsamples; s++ ) { cls = responses_data[s]; int* count_data = count[cls]->data.i; double* sum_data = sum[cls]->data.db; double* prod_data = productsum[cls]->data.db; const float* train_vec = train_data[s]; for( c1 = 0; c1 < _var_count; c1++, prod_data += _var_count ) { double val1 = train_vec[c1]; sum_data[c1] += val1; count_data[c1]++; for( c2 = c1; c2 < _var_count; c2++ ) prod_data[c2] += train_vec[c2]*val1; } } //计算每一类的每个属性平均值、协方差矩阵 // calculate avg, covariance matrix, c for( cls = 0; cls < nclasses; cls++ ) //对每一类 { double det = 1; int i, j; CvMat* w = inv_eigen_values[cls]; int* count_data = count[cls]->data.i; double* avg_data = avg[cls]->data.db; double* sum1 = sum[cls]->data.db; cvCompleteSymm( productsum[cls], 0 ); for( j = 0; j < _var_count; j++ ) //计算当前类别cls的每个变量属性值的平均值 { int n = count_data[j]; avg_data[j] = n ? sum1[j] / n : 0.; } count_data = count[cls]->data.i; avg_data = avg[cls]->data.db; sum1 = sum[cls]->data.db; for( i = 0; i < _var_count; i++ )//计算当前类别cls的变量协方差矩阵,矩阵大小为_var_count * _var_count,注意协方差矩阵对称。 { double* avg2_data = avg[cls]->data.db; double* sum2 = sum[cls]->data.db; double* prod_data = productsum[cls]->data.db + i*_var_count; double* cov_data = cov->data.db + i*_var_count; double s1val = sum1[i]; double avg1 = avg_data[i]; int _count = count_data[i]; for( j = 0; j <= i; j++ ) { double avg2 = avg2_data[j]; double cov_val = prod_data[j] - avg1 * sum2[j] - avg2 * s1val + avg1 * avg2 * _count; cov_val = (_count > 1) ? cov_val / (_count - 1) : cov_val; cov_data[j] = cov_val; } } CV_CALL( cvCompleteSymm( cov, 1 )); CV_CALL( cvSVD( cov, w, cov_rotate_mats[cls], 0, CV_SVD_U_T )); CV_CALL( cvMaxS( w, min_variation, w )); for( j = 0; j < _var_count; j++ ) det *= w->data.db[j]; CV_CALL( cvDiv( NULL, w, w )); c->data.db[cls] = det > 0 ? log(det) : -700; } result = true; __END__; if( !result || cvGetErrStatus() < 0 ) clear(); cvReleaseMat( &cov ); cvReleaseMat( &__cls_labels ); cvReleaseMat( &__var_idx ); cvFree( &train_data ); return result; }训练部分就此完成。
float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results ) const { float value = 0; if( !CV_IS_MAT(samples) || CV_MAT_TYPE(samples->type) != CV_32FC1 || samples->cols != var_all ) CV_Error( CV_StsBadArg, "The input samples must be 32f matrix with the number of columns = var_all" ); if( samples->rows > 1 && !results ) CV_Error( CV_StsNullPtr, "When the number of input samples is >1, the output vector of results must be passed" ); if( results ) { if( !CV_IS_MAT(results) || (CV_MAT_TYPE(results->type) != CV_32FC1 && CV_MAT_TYPE(results->type) != CV_32SC1) || (results->cols != 1 && results->rows != 1) || results->cols + results->rows - 1 != samples->rows ) CV_Error( CV_StsBadArg, "The output array must be integer or floating-point vector " "with the number of elements = number of rows in the input matrix" ); } const int* vidx = var_idx ? var_idx->data.i : 0; cv::parallel_for(cv::BlockedRange(0, samples->rows), predict_body(c, cov_rotate_mats, inv_eigen_values, avg, samples, vidx, cls_labels, results, &value, var_count )); return value; }可以发现,预测部分核心代码是:
cv::parallel_for(cv::BlockedRange(0, samples->rows), predict_body(c, cov_rotate_mats, inv_eigen_values, avg, samples, vidx, cls_labels, results, &value, var_count));parallel_for是用于并行支持的,可能会调用tbb模块。predict_body则是一个结构体,内部的()符号被重载,实现预测功能。其完整定义如下:
//predict函数调用predict_body结构体的()符号重载函数,实现基于贝叶斯的分类 struct predict_body { predict_body(CvMat* _c, CvMat** _cov_rotate_mats, CvMat** _inv_eigen_values, CvMat** _avg, const CvMat* _samples, const int* _vidx, CvMat* _cls_labels, CvMat* _results, float* _value, int _var_count1) { c = _c; cov_rotate_mats = _cov_rotate_mats; inv_eigen_values = _inv_eigen_values; avg = _avg; samples = _samples; vidx = _vidx; cls_labels = _cls_labels; results = _results; value = _value; var_count1 = _var_count1; } CvMat* c; CvMat** cov_rotate_mats; CvMat** inv_eigen_values; CvMat** avg; const CvMat* samples; const int* vidx; CvMat* cls_labels; CvMat* results; float* value; int var_count1; void operator()( const cv::BlockedRange& range ) const { int cls = -1; int rtype = 0, rstep = 0; int nclasses = cls_labels->cols; int _var_count = avg[0]->cols; if (results) { rtype = CV_MAT_TYPE(results->type); rstep = CV_IS_MAT_CONT(results->type) ? 1 : results->step/CV_ELEM_SIZE(rtype); } // allocate memory and initializing headers for calculating cv::AutoBuffer<double> buffer(nclasses + var_count1); CvMat diff = cvMat( 1, var_count1, CV_64FC1, &buffer[0] ); for(int k = range.begin(); k < range.end(); k += 1 )//对于每个输入测试样本 { int ival; double opt = FLT_MAX; for(int i = 0; i < nclasses; i++ ) //对于每一类别,计算其似然概率 { double cur = c->data.db[i]; CvMat* u = cov_rotate_mats[i]; CvMat* w = inv_eigen_values[i]; const double* avg_data = avg[i]->data.db; const float* x = (const float*)(samples->data.ptr + samples->step*k); // cov = u w u' --> cov^(-1) = u w^(-1) u' for(int j = 0; j < _var_count; j++ ) //计算特征相对于均值的偏移 diff.data.db[j] = avg_data[j] - x[vidx ? vidx[j] : j]; cvGEMM( &diff, u, 1, 0, 0, &diff, CV_GEMM_B_T ); for(int j = 0; j < _var_count; j++ )//计算特征的联合概率 { double d = diff.data.db[j]; cur += d*d*w->data.db[j]; } if( cur < opt ) //找到分类概率最大的 { cls = i; opt = cur; } // probability = exp( -0.5 * cur ) }//for(int i = 0; i < nclasses; i++ ) ival = cls_labels->data.i[cls]; if( results ) { if( rtype == CV_32SC1 ) results->data.i[k*rstep] = ival; else results->data.fl[k*rstep] = (float)ival; } if( k == 0 ) *value = (float)ival; }//for(int k = range.begin()... }//void operator()... };好啦,预测部分至此完成。
但有一个小小疑问:好像在predict部分实现代码中没有看到先验概率参与到计算当中,而贝叶斯估计是应该p(w|x)=p(w)*p(x|w)/...的呀,但是这里只看到了计算p(x|w)的部分。没有p(w)的身影,不知道为何,盼高人指点。
贝叶斯代码分析完成。