最近给 Mini6410 添加开机启动画面和操作系统未启动时充电管理画面。使用的平台是友善的mini6410。
由于操作系统未启动,大部分工作要在UBoot里进行完成。现在充电管理和开机动画基本实现,呵呵,中间经历了N多磨难啊 现在把做的工作记录下来。
前面有两篇文章是介绍UBoot的makefile的。我们从makefile中看到编译生成的第一个目标文件是start.o,现在我们就从start.s进行分析。
系统刚启动没有准备好C运行的堆栈,所以start.s实现为汇编。
#include <config.h> #include <version.h> #ifdef CONFIG_ENABLE_MMU #include <asm/proc/domain.h> #endif #include <regs.h> #ifndef CONFIG_ENABLE_MMU #ifndef CFG_PHY_UBOOT_BASE #define CFG_PHY_UBOOT_BASE CFG_UBOOT_BASE //使用了MMU 此处值为 0xc7e00000 #endif #endif /* ************************************************************************* * * Jump vector table as in table 3.1 in [1] * ************************************************************************* */ /*异常向量表*/ .globl _start _start: b reset ldr pc, _undefined_instruction ldr pc, _software_interrupt ldr pc, _prefetch_abort ldr pc, _data_abort ldr pc, _not_used ldr pc, _irq ldr pc, _fiq /*在当前标号_undefined_instruction所在的地址处放入四字节的数据,这个数据就是undefined_instruction标号 /* 的地址.意思就是说在当前_undefined_instruction对应的地址中放的是undefined_instruction的地址 /*word伪操作用于分配一段字内存单元(分配的单元都是字对齐的),并用伪操作中的expr初始化。.long和.int作用与之相同。 _undefined_instruction: .word undefined_instruction _software_interrupt: .word software_interrupt _prefetch_abort: .word prefetch_abort _data_abort: .word data_abort _not_used: .word not_used _irq: .word irq _fiq: .word fiq _pad: .word 0x12345678 /* now 16*4=64 */ .global _end_vect _end_vect: .balignl 16,0xdeadbeef /* ************************************************************************* * * Startup Code (reset vector) * * do important init only if we don't start from memory! * setup Memory and board specific bits prior to relocation. * relocate armboot to ram * setup stack * ************************************************************************* */ /*TEXT_BASE 在/board/config.mk文档中定义, 他定义了代码在运行时所在的地址, _TEXT_BASE中保存了这个地址 _TEXT_BASE: .word TEXT_BASE /* * Below variable is very important because we use MMU in U-Boot. * Without it, we cannot run code correctly before MMU is ON. * by scsuh. */ _TEXT_PHY_BASE: .word CFG_PHY_UBOOT_BASE /*使用了MMU 此处值为 0xc7e00000*/ .globl _armboot_start/*声明全局标志. 声明的该标号_armboot_start可以被外部使用*/ _armboot_start: .word _start /* * These are defined in the board-specific linker script. */ /* BSS段 数据段 代码段 堆栈 声明:大部分来自于维基百科,自由的百科全书。 BSS段:在采用段式内存管理的架构中,BSS段(bsssegment)通常是指用来存放程序中未初始化的全局变量的一块内存区域。BSS是英文Block Started by Symbol的简称。BSS段属于静态内存分配。 数据段:在采用段式内存管理的架构中,数据段(datasegment)通常是指用来存放程序中已初始化的全局变量的一块内存区域。数据段属于静态内存分配。 代码段:在采用段式内存管理的架构中,代码段(codesegment / text segment)通常是指用来存放程序执行代码的一块内存区域。这部分区域的大小在程序运行前就已经确定,并且内存区域通常属于只读, 某些架构也允许代码段为可写,即允许自修改程序。 在代码段中,也有可能包含一些只读的常数变量,例如字符串常量等。 堆(heap):堆是用于存放进程运行中被动态分配的内存段,它的大小并不固定,可动态扩张或缩减。当进程调用malloc等函数分配内存时,新分配的内存就被动态添加到堆上(堆被扩张);当利用free等函数释放内存时,被释放的内存从堆中被剔除(堆被缩减) 栈(stack):栈又称堆栈, 是用户存放程序临时创建的局部变量,也就是说我们函数括弧“{}”中定义的变量(但不包括static声明的变量,static意味着在数据段中存放变量)。除此以外,在函数被调用时,其参数也会被压入发起调用的进程栈中,并且待到调用结束后,函数的返回值也会被存放回栈中。由于栈的先进先出特点,所以栈特别方便用来保存/恢复调用现场。从这个意义上讲,我们可以把堆栈看成一个寄存、交换临时数据的内存区。 */ .globl _bss_start //bss段开始 _bss_start: .word __bss_start .globl _bss_end //bss段结束 _bss_end: .word _end #ifdef CONFIG_USE_IRQ /* IRQ stack memory (calculated at run-time) */ .globl IRQ_STACK_START/*预处理标号 目的:让IRQ_STACK_START指向地址0x0badc0de(这个需要根据硬件更改)*/ IRQ_STACK_START: .word 0x0badc0de /* IRQ stack memory (calculated at run-time) */ .globl FIQ_STACK_START FIQ_STACK_START: .word 0x0badc0de #endif /* * the actual reset code */ /* 开机及中断跳转到此 reset:/* * set the cpu to SVC32 mode */ /*EC: 模式位清零*//*bic是位清零(Bit Clear)指令,本语句是把r0的Bit[4:0]位清零(由0x1F指示),然后把结果写入r0中。*/ /*EC: 工作模式位设置为10011,为管理模式,irq fiq设置为1,屏蔽中断*/ /*orr指令是按位求或,本语句是r0的 Bit7,Bit6,Bit4,Bit1,Bit0 置为1,其它位保持不变。*/ /*执行完上述操作后,cpsr中的 I=1, F=1, T保持不变(默认为0),M[4:0]=10011,意思是禁止IRQ,禁止FIQ,/*执行完上述操作后,cpsr中的 I=1, F=1, T保持不变(默认为0),M[4:0]=10011,意思是禁止IRQ,禁止FIQ,工作在ARM状态,工作在SVC32模式。*/ mrs r0,cpsr bic r0,r0,#0x1f orr r0,r0,#0xd3 msr cpsr,r0 /* ************************************************************************* * * CPU_init_critical registers * * setup important registers * setup memory timing * ************************************************************************* */ /* * we do sys-critical inits only at reboot, * not when booting from ram! */ cpu_init_crit: /* * flush v4 I/D caches *//*数据处理指令对于存放在寄存器中的数据进行操作。*/ mov r0, #0 mcr p15, 0, r0, c7, c7, 0 /* flush v3/v4 cache */ mcr p15, 0, r0, c8, c7, 0 /* flush v4 TLB */ /*协处理器指令用于扩展指令集P协处理器指令可用于提供附加的计算能力,有可用于控制包括cache和内存 * 管理的存储子系统。协处理器指令包括数据处理指令,寄存器传输指令及内存传输指令。协处理器指令只用于带 * 有协处理器的ARM内核。 * CDP {<cond>} cp, opcode1, Cd, Cn{,opcode2} 协处理器数据处理 -- 在协处理器内部执行一个数据处理操作 * <MRC/MCR> {<cond>} cp, opcode1, Rd, Cn, Cm{,opcode2} 协处理器寄存器传输 -- 把数据送入/取出协处理器寄存器 * <LDC/STC> {<cod>} cp, Cd, addressing 协处理器内存比较 -- 从协处理器装载/存储一个内存数据块 * 其中:cp域代表协处理器的编号,为p0~P15. opcode域描述要在协处理器中进行的操作。Cn, Cm及Cd描述在协处理器中的寄存器。 * 协处理器15(CP15)是为系统控制预留的,如内存管理,写缓冲控制,cache控制及寄存器识别等。 * MRC p15,0,r10,c0,c0,0 把协处理器15寄存器c0的内容拷贝到r10中,cp15寄存器c0中包含处理器标识,其内容拷贝到通用寄存器r10 */ /* * disable MMU stuff and caches */ mrc p15, 0, r0, c1, c0, 0 bic r0, r0, #0x00002300 @ clear bits 13, 9:8 (--V- --RS) bic r0, r0, #0x00000087 @ clear bits 7, 2:0 (B--- -CAM) orr r0, r0, #0x00000002 @ set bit 2 (A) Align orr r0, r0, #0x00001000 @ set bit 12 (I) I-Cache mcr p15, 0, r0, c1, c0, 0 /* Peri port setup */ ldr r0, =0x70000000 orr r0, r0, #0x13 mcr p15,0,r0,c15,c2,4 @ 256M(0x70000000-0x7fffffff) /* * Go setup Memory and board specific bits prior to relocation. */ bl lowlevel_init /* go setup pll,mux,memory */ /* when we already run in ram, we don't need to relocate U-Boot. * and actually, memory controller must be configured before U-Boot * is running in ram. *//*此处如果当前地址和原始定义的起始地址相同则跳过代码复制*/ ldr r0, =0xff000fff bic r1, pc, r0 /* r0 <- current base addr of code */ ldr r2, _TEXT_BASE /* r1 <- original base addr in ram */ bic r2, r2, r0 /* r0 <- current base addr of code */ cmp r1, r2 /* compare r0, r1 */ beq after_copy /* r0 == r1 then skip flash copy */ #ifdef CONFIG_BOOT_NAND mov r0, #0x1000 bl copy_from_nand /*copy uboot to ram from nand*/ #endif after_copy: /*对指示灯进行操作*/ ldr r0, =ELFIN_GPIO_BASE ldr r1, =0xC00 str r1, [r0, #GPPDAT_OFFSET] ldr r1, [r0, #GPFPUD_OFFSET] bic r1, r1, #0xc0000000 orr r1, r1, #0x80000000 str r1, [r0, #GPFPUD_OFFSET] ldr r1, [r0, #GPFDAT_OFFSET] orr r1, r1, #0x8000 str r1, [r0, #GPFDAT_OFFSET] ldr r1, [r0, #GPFCON_OFFSET] bic r1, r1, #0xc0000000 orr r1, r1, #0x40000000 str r1, [r0, #GPFCON_OFFSET] #ifdef CONFIG_ENABLE_MMU enable_mmu: /* enable domain access */ ldr r5, =0x0000ffff mcr p15, 0, r5, c3, c0, 0 @ load domain access register /* Set the TTB register */ ldr r0, _mmu_table_base ldr r1, =CFG_PHY_UBOOT_BASE ldr r2, =0xfff00000 bic r0, r0, r2 orr r1, r0, r1 mcr p15, 0, r1, c2, c0, 0 /* Enable the MMU */ mmu_on: mrc p15, 0, r0, c1, c0, 0 orr r0, r0, #1 /* Set CR_M to enable MMU */ mcr p15, 0, r0, c1, c0, 0 nop nop nop nop #endif skip_hw_init: /* Set up the stack */ stack_setup: //设置栈地址 #ifdef CONFIG_MEMORY_UPPER_CODE ldr sp, =(CFG_UBOOT_BASE + CFG_UBOOT_SIZE - 0xc) #endif //设置BSS段 clear_bss: ldr r0, _bss_start /* find start of bss segment */ ldr r1, _bss_end /* stop here */ mov r2, #0x00000000 /* clear */ clbss_l: str r2, [r0] /* clear loop... */ add r0, r0, #4 cmp r0, r1 ble clbss_l ldr pc, _start_armboot /*跳转到SDRAM中运行*/ _start_armboot: .word start_armboot #ifdef CONFIG_ENABLE_MMU _mmu_table_base: .word mmu_table #endif /* * copy U-Boot to SDRAM and jump to ram (from NAND or OneNAND) * r0: size to be compared * Load 1'st 2blocks to RAM because U-boot's size is larger than 1block(128k) size */ .globl copy_from_nand copy_from_nand: mov r10, lr /* save return address */ mov r9, r0 /* get ready to call C functions */ ldr sp, _TEXT_PHY_BASE /* setup temp stack pointer */ sub sp, sp, #12 mov fp, #0 /* no previous frame, so fp=0 */ mov r9, #0x1000 // ldr r0, =ELFIN_UART_BASE // ldr r1, =0x4b4b4b4b // str r1, [r0, #UTXH_OFFSET] bl copy_uboot_to_ram 3: tst r0, #0x0 /*copy_uboot_to_ram返回0 复制成功*/ bne copy_failed /*Stepping Stone start address 0x0c000000*/ ldr r0, =0x0c000000 ldr r1, _TEXT_PHY_BASE 1: ldr r3, [r0], #4 ldr r4, [r1], #4 teq r3, r4 bne compare_failed /* not matched */ subs r9, r9, #4 bne 1b /* 此处循环测了一段4k 相同 */ 4: mov lr, r10 /* all is OK */ mov pc, lr copy_failed: nop /* copy from nand failed */ b copy_failed compare_failed: nop /* compare failed */ b compare_failed /* * we assume that cache operation is done before. (eg. cleanup_before_linux()) * actually, we don't need to do anything about cache if not use d-cache in U-Boot * So, in this function we clean only MMU. by scsuh * * void theLastJump(void *kernel, int arch_num, uint boot_params); */ #ifdef CONFIG_ENABLE_MMU .globl theLastJump theLastJump: mov r9, r0 ldr r3, =0xfff00000 ldr r4, _TEXT_PHY_BASE adr r5, phy_last_jump bic r5, r5, r3 orr r5, r5, r4 mov pc, r5 phy_last_jump: /* * disable MMU stuff */ mrc p15, 0, r0, c1, c0, 0 bic r0, r0, #0x00002300 /* clear bits 13, 9:8 (--V- --RS) */ bic r0, r0, #0x00000087 /* clear bits 7, 2:0 (B--- -CAM) */ orr r0, r0, #0x00000002 /* set bit 2 (A) Align */ orr r0, r0, #0x00001000 /* set bit 12 (I) I-Cache */ mcr p15, 0, r0, c1, c0, 0 mcr p15, 0, r0, c8, c7, 0 /* flush v4 TLB */ mov r0, #0 mov pc, r9 #endif /* ************************************************************************* * * Interrupt handling * ************************************************************************* */ @ @ IRQ stack frame. @ #define S_FRAME_SIZE 72 #define S_OLD_R0 68 #define S_PSR 64 #define S_PC 60 #define S_LR 56 #define S_SP 52 #define S_IP 48 #define S_FP 44 #define S_R10 40 #define S_R9 36 #define S_R8 32 #define S_R7 28 #define S_R6 24 #define S_R5 20 #define S_R4 16 #define S_R3 12 #define S_R2 8 #define S_R1 4 #define S_R0 0 #define MODE_SVC 0x13 #define I_BIT 0x80 /* * use bad_save_user_regs for abort/prefetch/undef/swi ... * use irq_save_user_regs / irq_restore_user_regs for IRQ/FIQ handling */ .macro bad_save_user_regs sub sp, sp, #S_FRAME_SIZE @ carve out a frame on current user stack stmia sp, {r0 - r12} @ Save user registers (now in svc mode) r0-r12 ldr r2, _armboot_start sub r2, r2, #(CFG_MALLOC_LEN) sub r2, r2, #(CFG_GBL_DATA_SIZE+8) @ set base 2 words into abort stack ldmia r2, {r2 - r3} @ get values for "aborted" pc and cpsr (into parm regs) add r0, sp, #S_FRAME_SIZE @ grab pointer to old stack add r5, sp, #S_SP mov r1, lr stmia r5, {r0 - r3} @ save sp_SVC, lr_SVC, pc, cpsr mov r0, sp @ save current stack into r0 (param register) .endm .macro irq_save_user_regs sub sp, sp, #S_FRAME_SIZE stmia sp, {r0 - r12} @ Calling r0-r12 add r8, sp, #S_PC @ !!!! R8 NEEDS to be saved !!!! a reserved stack spot would be good. stmdb r8, {sp, lr}^ @ Calling SP, LR str lr, [r8, #0] @ Save calling PC mrs r6, spsr str r6, [r8, #4] @ Save CPSR str r0, [r8, #8] @ Save OLD_R0 mov r0, sp .endm .macro irq_restore_user_regs ldmia sp, {r0 - lr}^ @ Calling r0 - lr mov r0, r0 ldr lr, [sp, #S_PC] @ Get PC add sp, sp, #S_FRAME_SIZE subs pc, lr, #4 @ return & move spsr_svc into cpsr .endm .macro get_bad_stack ldr r13, _armboot_start @ setup our mode stack (enter in banked mode) sub r13, r13, #(CFG_MALLOC_LEN) @ move past malloc pool sub r13, r13, #(CFG_GBL_DATA_SIZE+8) @ move to reserved a couple spots for abort stack str lr, [r13] @ save caller lr in position 0 of saved stack mrs lr, spsr @ get the spsr str lr, [r13, #4] @ save spsr in position 1 of saved stack mov r13, #MODE_SVC @ prepare SVC-Mode @ msr spsr_c, r13 msr spsr, r13 @ switch modes, make sure moves will execute mov lr, pc @ capture return pc movs pc, lr @ jump to next instruction & switch modes. .endm .macro get_bad_stack_swi sub r13, r13, #4 @ space on current stack for scratch reg. str r0, [r13] @ save R0's value. ldr r0, _armboot_start @ get data regions start sub r0, r0, #(CFG_MALLOC_LEN) @ move past malloc pool sub r0, r0, #(CFG_GBL_DATA_SIZE+8) @ move past gbl and a couple spots for abort stack str lr, [r0] @ save caller lr in position 0 of saved stack mrs r0, spsr @ get the spsr str lr, [r0, #4] @ save spsr in position 1 of saved stack ldr r0, [r13] @ restore r0 add r13, r13, #4 @ pop stack entry .endm .macro get_irq_stack @ setup IRQ stack ldr sp, IRQ_STACK_START .endm .macro get_fiq_stack @ setup FIQ stack ldr sp, FIQ_STACK_START .endm /* * exception handlers */ .align 5 undefined_instruction: get_bad_stack bad_save_user_regs bl do_undefined_instruction .align 5 software_interrupt: get_bad_stack_swi bad_save_user_regs bl do_software_interrupt .align 5 prefetch_abort: get_bad_stack bad_save_user_regs bl do_prefetch_abort .align 5 data_abort: get_bad_stack bad_save_user_regs bl do_data_abort .align 5 not_used: get_bad_stack bad_save_user_regs bl do_not_used #ifdef CONFIG_USE_IRQ .align 5 irq: get_irq_stack irq_save_user_regs bl do_irq irq_restore_user_regs .align 5 fiq: get_fiq_stack /* someone ought to write a more effiction fiq_save_user_regs */ irq_save_user_regs bl do_fiq irq_restore_user_regs #else .align 5 irq: get_bad_stack bad_save_user_regs bl do_irq .align 5 fiq: get_bad_stack bad_save_user_regs bl do_fiq #endif .align 5 .global arm1136_cache_flush arm1136_cache_flush: mcr p15, 0, r1, c7, c5, 0 @ invalidate I cache mov pc, lr @ back to caller #if defined(CONFIG_INTEGRATOR) && defined(CONFIG_ARCH_CINTEGRATOR) /* Use the IntegratorCP function from board/integratorcp/platform.S */ #elif defined(CONFIG_S3C64XX) /* For future usage of S3C64XX*/ #else .align 5 .globl reset_cpu reset_cpu: ldr r1, rstctl /* get addr for global reset reg */ mov r3, #0x2 /* full reset pll+mpu */ str r3, [r1] /* force reset */ mov r0, r0 _loop_forever: b _loop_forever rstctl: .word PM_RSTCTRL_WKUP #endif
可以看出 start.s主要做的工作就是ARM初始化 lowlevel_init 下节分析。把nandflah中的代码读到SDRAM,设置堆栈和初始化BSS段。通过ldrpc, _start_armboot 跳转到SDRAM中执行C代码 start_armboot 。 下一节我们主要分析 lowlevel_init、copy_uboot_to_ram及start_armboot 做了哪些工作。 参考:http://blog.csdn.net/ecbtnrt/article/details/6630085