Hadoop 实战之MapReduce链接作业之预处理

环境:Vmware 8.0 和Ubuntu11.04

Hadoop 实战之MapReduce链接作业之预处理

第一步:首先创建一个工程命名为HadoopTest.目录结构如下图:

Hadoop 实战之MapReduce链接作业之预处理_第1张图片

第二步: 在/home/tanglg1987目录下新建一个start.sh脚本文件,每次启动虚拟机都要删除/tmp目录下的全部文件,重新格式化namenode,代码如下:

[plain]  view plain copy
  1. sudo rm -rf /tmp/*  
  2. rm -rf /home/tanglg1987/hadoop-0.20.2/logs  
  3. hadoop namenode -format  
  4. hadoop datanode -format  
  5. start-all.sh  
  6. hadoop fs -mkdir input   
  7. hadoop dfsadmin -safemode leave  

 

  第三步:给start.sh增加执行权限并启动hadoop伪分布式集群,代码如下:
[plain]  view plain copy
  1. chmod 777 /home/tanglg1987/start.sh  
  2. ./start.sh   

执行过程如下:

Hadoop 实战之MapReduce链接作业之预处理_第2张图片

第四步:上传本地文件到hdfs

在/home/tanglg1987目录下新建Customer.txt内容如下:

[plain]  view plain copy
  1. 100 tom 90  
  2. 101 mary 85  
  3. 102 kate 60  

上传本地文件到hdfs:

[plain]  view plain copy
  1. hadoop fs -put /home/tanglg1987/ChainMapper.txt input  

第五步:新建一个ChainMapperDemo.java,代码如下:

[java]  view plain copy
  1. package com.baison.action;  
  2. import java.io.IOException;  
  3. import java.util.*;  
  4. import java.lang.String;  
  5. import org.apache.hadoop.fs.Path;  
  6. import org.apache.hadoop.conf.*;  
  7. import org.apache.hadoop.io.*;  
  8. import org.apache.hadoop.mapred.*;  
  9. import org.apache.hadoop.util.*;  
  10. import org.apache.hadoop.mapred.lib.*;  
  11. public class ChainMapperDemo {  
  12.     public static class Map00 extends MapReduceBase implements  
  13.             Mapper<Text, Text, Text, Text> {  
  14.         public void map(Text key, Text value, OutputCollector output,  
  15.                 Reporter reporter) throws IOException {  
  16.             Text ft = new Text("100");  
  17.             if (!key.equals(ft)) {  
  18.                 output.collect(key, value);  
  19.             }  
  20.         }  
  21.     }  
  22.     public static class Map01 extends MapReduceBase implements  
  23.             Mapper<Text, Text, Text, Text> {  
  24.         public void map(Text key, Text value, OutputCollector output,  
  25.                 Reporter reporter) throws IOException {  
  26.             Text ft = new Text("101");  
  27.             if (!key.equals(ft)) {  
  28.                 output.collect(key, value);  
  29.             }  
  30.         }  
  31.     }  
  32.     public static class Reduce extends MapReduceBase implements  
  33.             Reducer<Text, Text, Text, Text> {  
  34.         public void reduce(Text key, Iterator values, OutputCollector output,  
  35.                 Reporter reporter) throws IOException {  
  36.             while (values.hasNext()) {  
  37.                 output.collect(key, values.next());  
  38.             }  
  39.   
  40.         }  
  41.     }  
  42.     public static void main(String[] args) throws Exception {  
  43.         String[] arg = { "hdfs://localhost:9100/user/tanglg1987/input/ChainMapper.txt",  
  44.                 "hdfs://localhost:9100/user/tanglg1987/output" };  
  45.         JobConf conf = new JobConf(ChainMapperDemo.class);  
  46.         conf.setJobName("ChainMapperDemo");  
  47.         conf.setInputFormat(KeyValueTextInputFormat.class);  
  48.         conf.setOutputFormat(TextOutputFormat.class);  
  49.         ChainMapper cm = new ChainMapper();  
  50.         JobConf mapAConf = new JobConf(false);  
  51.         cm.addMapper(conf, Map00.class, Text.class, Text.class, Text.class,  
  52.                 Text.classtrue, mapAConf);  
  53.         JobConf mapBConf = new JobConf(false);  
  54.         cm.addMapper(conf, Map01.class, Text.class, Text.class, Text.class,  
  55.                 Text.classtrue, mapBConf);  
  56.         conf.setReducerClass(Reduce.class);  
  57.         conf.setOutputKeyClass(Text.class);  
  58.         conf.setOutputValueClass(Text.class);  
  59.         FileInputFormat.setInputPaths(conf, new Path(arg[0]));  
  60.         FileOutputFormat.setOutputPath(conf, new Path(arg[1]));  
  61.         JobClient.runJob(conf);  
  62.     }  
  63. }  

第六步:Run On Hadoop,运行过程如下:

12/10/17 21:05:53 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
12/10/17 21:05:53 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
12/10/17 21:05:53 WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
12/10/17 21:05:54 INFO mapred.FileInputFormat: Total input paths to process : 1
12/10/17 21:05:54 INFO mapred.JobClient: Running job: job_local_0001
12/10/17 21:05:54 INFO mapred.FileInputFormat: Total input paths to process : 1
12/10/17 21:05:54 INFO mapred.MapTask: numReduceTasks: 1
12/10/17 21:05:54 INFO mapred.MapTask: io.sort.mb = 100
12/10/17 21:05:54 INFO mapred.MapTask: data buffer = 79691776/99614720
12/10/17 21:05:54 INFO mapred.MapTask: record buffer = 262144/327680
12/10/17 21:05:54 INFO mapred.MapTask: Starting flush of map output
12/10/17 21:05:54 INFO mapred.MapTask: Finished spill 0
12/10/17 21:05:54 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
12/10/17 21:05:54 INFO mapred.LocalJobRunner: hdfs://localhost:9100/user/tanglg1987/input/ChainMapper.txt:0+35
12/10/17 21:05:54 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
12/10/17 21:05:54 INFO mapred.LocalJobRunner: 
12/10/17 21:05:54 INFO mapred.Merger: Merging 1 sorted segments
12/10/17 21:05:54 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 16 bytes
12/10/17 21:05:54 INFO mapred.LocalJobRunner: 
12/10/17 21:05:54 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
12/10/17 21:05:54 INFO mapred.LocalJobRunner: 
12/10/17 21:05:54 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now
12/10/17 21:05:54 INFO mapred.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9100/user/tanglg1987/output
12/10/17 21:05:54 INFO mapred.LocalJobRunner: reduce > reduce
12/10/17 21:05:54 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
12/10/17 21:05:55 INFO mapred.JobClient:  map 100% reduce 100%
12/10/17 21:05:55 INFO mapred.JobClient: Job complete: job_local_0001
12/10/17 21:05:55 INFO mapred.JobClient: Counters: 15
12/10/17 21:05:55 INFO mapred.JobClient:   FileSystemCounters
12/10/17 21:05:55 INFO mapred.JobClient:     FILE_BYTES_READ=36152
12/10/17 21:05:55 INFO mapred.JobClient:     HDFS_BYTES_READ=70
12/10/17 21:05:55 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=73202
12/10/17 21:05:55 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=12
12/10/17 21:05:55 INFO mapred.JobClient:   Map-Reduce Framework
12/10/17 21:05:55 INFO mapred.JobClient:     Reduce input groups=1
12/10/17 21:05:55 INFO mapred.JobClient:     Combine output records=0
12/10/17 21:05:55 INFO mapred.JobClient:     Map input records=3
12/10/17 21:05:55 INFO mapred.JobClient:     Reduce shuffle bytes=0
12/10/17 21:05:55 INFO mapred.JobClient:     Reduce output records=1
12/10/17 21:05:55 INFO mapred.JobClient:     Spilled Records=2
12/10/17 21:05:55 INFO mapred.JobClient:     Map output bytes=12
12/10/17 21:05:55 INFO mapred.JobClient:     Map input bytes=35
12/10/17 21:05:55 INFO mapred.JobClient:     Combine input records=0
12/10/17 21:05:55 INFO mapred.JobClient:     Map output records=1
12/10/17 21:05:55 INFO mapred.JobClient:     Reduce input records=1

第七步:查看结果集,运行结果如下:

Hadoop 实战之MapReduce链接作业之预处理_第3张图片

你可能感兴趣的:(Hadoop 实战之MapReduce链接作业之预处理)