Linux设备模型之input子系统详解(二)

;           break; 
         } 
  
         if (type != EV_SYN) 
                   dev->sync = 0; 
  
         if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 
                   dev->event(dev, type, code, value); 
  
         if (disposition & INPUT_PASS_TO_HANDLERS) 
                   input_pass_event (dev, type, code, value); 

在这里,我们忽略掉具体事件的处理.到最后,如果该事件需要input device来完成的,就会将disposition设置成INPUT_PASS_TO_DEVICE.如果需要handler来完成的,就将dispostion设为INPUT_PASS_TO_DEVICE.如果需要两者都参与,将disposition设置为INPUT_PASS_TO_ALL. 
需要输入设备参与的,回调设备的event函数.如果需要handler参与的.调用input_pass_event().代码如下: 
static void input_pass_event(struct input_dev *dev, 
                                 unsigned int type, unsigned int code, int value) 

         struct input_handle *handle; 
  
         rcu_read_lock(); 
  
         handle = rcu_dereference(dev->grab); 
         if (handle) 
                   handle->handler->event(handle, type, code, value); 
         else 
                   list_for_each_entry_rcu(handle, &dev->h_list, d_node) 
                            if (handle->open) 
                                     handle->handler->event(handle, 
                                                                 type, code, value); 
         rcu_read_unlock(); 

如果input device被强制指定了handler,则调用该handler的event函数. 
结合handle注册的分析.我们知道.会将handle挂到input device的h_list链表上. 
如果没有为input device强制指定handler.就会遍历input device->h_list上的handle成员.如果该handle被打开,则调用与输入设备对应的handler的event()函数.注意,只有在handle被打开的情况下才会接收到事件. 
另外,输入设备的handler强制设置一般是用带EVIOCGRAB标志的ioctl来完成的.如下是发图的方示总结evnet的处理过程: 
  
  
 
  
我们已经分析了input device,handler和handle的注册过程以及事件的上报和处理.下面以evdev为实例做分析.来贯穿理解一下整个过程. 
  
七:evdev概述 
 Evdev对应的设备节点一般位于/dev/input/event0 ~ /dev/input/event4.理论上可以对应32个设备节点.分别代表被handler匹配的32个input device. 
可以用cat /dev/input/event0.然后移动鼠标或者键盘按键就会有数据输出(两者之间只能选一.因为一个设备文件只能关能一个输入设备).还可以往这个文件里写数据,使其产生特定的事件.这个过程我们之后再详细分析. 
为了分析这一过程,必须从input子系统的初始化说起. 
  
八:input子系统的初始化 
Input子系统的初始化函数为input_init().代码如下: 
static int __init input_init(void) 

         int err; 
  
         err = class_register(&input_class); 
         if (err) { 
                   printk(KERN_ERR "input: unable to register input_dev class/n"); 
                   return err; 
         } 
  
         err = input_proc_init(); 
         if (err) 
                   goto fail1; 
  
         err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 
         if (err) { 
                   printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 
                   goto fail2; 
         } 
  
         return 0; 
  
 fail2:        input_proc_exit(); 
 fail1:        class_unregister(&input_class); 
         return err; 

在这个初始化函数里,先注册了一个名为”input”的类.所有input device都属于这个类.在sysfs中表现就是.所有input device所代表的目录都位于/dev/class/input下面. 
然后调用input_proc_init()在/proc下面建立相关的交互文件. 
再后调用register_chrdev()注册了主设备号为INPUT_MAJOR(13).次设备号为0~255的字符设备.它的操作指针为input_fops. 
在这里,我们看到.所有主设备号13的字符设备的操作最终都会转入到input_fops中.在前面分析的/dev/input/event0~/dev/input/event4的主设备号为13.操作也不例外的落在了input_fops中. 
Input_fops定义如下: 
static const struct file_operations input_fops = { 
         .owner = THIS_MODULE, 
         .open = input_open_file, 
}; 
打开文件所对应的操作函数为input_open_file.代码如下示: 
static int input_open_file(struct inode *inode, struct file *file) 

         struct input_handler *handler = input_table[iminor(inode) >> 5]; 
         const struct file_operations *old_fops, *new_fops = NULL; 
         int err; 
  
         /* No load-on-demand here? */ 
         if (!handler || !(new_fops = fops_get(handler->fops))) 
                   return -ENODEV; 
  
iminor(inode)为打开文件所对应的次设备号.input_table是一个struct input_handler全局数组.在这里.它先设备结点的次设备号右移5位做为索引值到input_table中取对应项.从这里我们也可以看到.一个handle代表1<<5个设备节点(因为在input_table中取值是以次备号右移5位为索引的.即低5位相同的次备号对应的是同一个索引).在这里,终于看到了input_talbe大显身手的地方了.input_talbe[ ]中取值和input_talbe[ ]的赋值,这两个过程是相对应的. 
  
在input_table中找到对应的handler之后,就会检验这个handle是否存,是否带有fops文件操作集.如果没有.则返回一个设备不存在的错误. 
         /* 
          * That's _really_ odd. Usually NULL ->open means "nothing special", 
          * not "no device". Oh, well... 
          */ 
         if (!new_fops->open) { 
                   fops_put(new_fops); 
                   return -ENODEV; 
         } 
         old_fops = file->f_op; 
         file->f_op = new_fops; 
  
         err = new_fops->open(inode, file); 
  
         if (err) { 
                   fops_put(file->f_op); 
                   file->f_op = fops_get(old_fops); 
         } 
         fops_put(old_fops); 
         return err; 

然后将handler中的fops替换掉当前的fops.如果新的fops中有open()函数,则调用它. 
  
九:evdev的初始化 
Evdev的模块初始化函数为evdev_init().代码如下: 
static int __init evdev_init(void) 

         return input_register_handler(&evdev_handler); 

它调用了input_register_handler注册了一个handler. 
注意到,在这里evdev_handler中定义的minor为EVDEV_MINOR_BASE(64).也就是说evdev_handler所表示的设备文件范围为(13,64)à(13,64+32). 
从之前的分析我们知道.匹配成功的关键在于handler中的blacklist和id_talbe. Evdev_handler的id_table定义如下: 
static const struct input_device_id evdev_ids[] = { 
         { .driver_info = 1 },     /* Matches all devices */ 
         { },                       /* Terminating zero entry */ 
}; 
它没有定义flags.也没有定义匹配属性值.这个handler是匹配所有input device的.从前面的分析我们知道.匹配成功之后会调用handler->connect函数. 
在Evdev_handler中,该成员函数如下所示: 
  
static int evdev_connect(struct input_handler *handler, struct input_dev *dev, 
                             const struct input_device_id *id) 

         struct evdev *evdev; 
         int minor; 
         int error; 
  
         for (minor = 0; minor < EVDEV_MINORS; minor++) 
                   if (!evdev_table[minor]) 
                            break; 
  
         if (minor == EVDEV_MINORS) { 
                   printk(KERN_ERR "evdev: no more free evdev devices/n"); 
                   return -ENFILE; 
         } 
EVDEV_MINORS定义为32.表示evdev_handler所表示的32个设备文件.evdev_talbe是一个struct evdev类型的数组.struct evdev是模块使用的封装结构.在接下来的代码中我们可以看到这个结构的使用. 
这一段代码的在evdev_talbe找到为空的那一项.minor就是数组中第一项为空的序号. 
  
         evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL); 
         if (!evdev) 
                   return -ENOMEM; 
  
         INIT_LIST_HEAD(&evdev->client_list); 
         spin_lock_init(&evdev->client_lock); 
         mutex_init(&evdev->mutex); 
         init_waitqueue_head(&evdev->wait); 
  
         snprintf(evdev->name, sizeof(evdev->name), "event%d", minor); 
         evdev->exist = 1; 
         evdev->minor = minor; 
  
         evdev->handle.dev = input_get_device(dev); 
         evdev->handle.name = evdev->name; 
         evdev->handle.handler = handler; 
         evdev->handle.private = evdev; 
接下来,分配了一个evdev结构,并对这个结构进行初始化.在这里我们可以看到,这个结构封装了一个handle结构,这结构与我们之前所讨论的handler是不相同的.注意有一个字母的差别哦.我们可以把handle看成是handler和input device的信息集合体.在这个结构里集合了匹配成功的handler和input device 
  
         strlcpy(evdev->dev.bus_id, evdev->name, sizeof(evdev->dev.bus_id)); 
         evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor); 
         evdev->dev.class = &input_class; 
         evdev->dev.parent = &dev->dev; 
         evdev->dev.release = evdev_free; 
         device_initialize(&evdev->dev); 
在这段代码里主要完成evdev封装的device的初始化.注意在这里,使它所属的类指向input_class.这样在/sysfs中创建的设备目录就会在/sys/class/input/下面显示. 
  
         error = input_register_handle(&evdev->handle); 
         if (error) 
                   goto err_free_evdev; 
         error = evdev_install_chrdev(evdev); 
         if (error) 
                   goto err_unregister_handle; 
  
         error = device_add(&evdev->dev); 
         if (error) 
                   goto err_cleanup_evdev; 
  
         return 0; 
  
 err_cleanup_evdev: 
         evdev_cleanup(evdev); 
 err_unregister_handle: 
         input_unregister_handle(&evdev->handle); 
 err_free_evdev: 
         put_device(&evdev->dev); 
         return error; 

注册handle,如果是成功的,那么调用evdev_install_chrdev将evdev_table的minor项指向evdev. 然后将evdev->device注册到sysfs.如果失败,将进行相关的错误处理. 
万事俱备了,但是要接收事件,还得要等”东风”.这个”东风”就是要打开相应的handle.这个打开过程是在文件的open()中完成的. 
  
十:evdev设备结点的open()操作 
我们知道.对主设备号为INPUT_MAJOR的设备节点进行操作,会将操作集转换成handler的操作集.在evdev中,这个操作集就是evdev_fops.对应的open函数如下示: 
static int evdev_open(struct inode *inode, struct file *file) 

         struct evdev *evdev; 
         struct evdev_client *client; 
         int i = iminor(inode) - EVDEV_MINOR_BASE; 
         int error; 
  
         if (i >= EVDEV_MINORS) 
                   return -ENODEV; 
  
         error = mutex_lock_interruptible(&evdev_table_mutex); 
         if (error) 
                   return error; 
         evdev = evdev_table[i]; 
         if (evdev) 
                   get_device(&evdev->dev); 
         mutex_unlock(&evdev_table_mutex); 
  
         if (!evdev) 
                   return -ENODEV; 
  
         client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL); 
         if (!client) { 
                   error = -ENOMEM; 
                   goto err_put_evdev; 
         } 
         spin_lock_init(&client->buffer_lock); 
         client->evdev = evdev; 
         evdev_attach_client(evdev, client); 
  
         error = evdev_open_device(evdev); 
         if (error) 
                   goto err_free_client; 
  
         file->private_data = client; 
         return 0; 
  
 err_free_client: 
         evdev_detach_client(evdev, client); 
         kfree(client); 
 err_put_evdev: 
         put_device(&evdev->dev); 
         return error; 

iminor(inode) - EVDEV_MINOR_BASE就得到了在evdev_table[ ]中的序号.然后将数组中对应的evdev取出.递增devdev中device的引用计数. 
分配并初始化一个client.并将它和evdev关联起来: client->evdev指向它所表示的evdev. 将client挂到evdev->client_list上. 将client赋为file的私有区. 
对应handle的打开是在此evdev_open_device()中完成的.代码如下: 
static int evdev_open_device(struct evdev *evdev) 

         int retval; 
  
         retval = mutex_lock_interruptible(&evdev->mutex); 
         if (retval) 
                   return retval; 
  
         if (!evdev->exist) 
                   retval = -ENODEV; 
         else if (!evdev->open++) { 
                   retval = input_open_device(&evdev->handle); 
                   if (retval) 
                            evdev->open--; 
         } 
  
         mutex_unlock(&evdev->mutex); 
         return retval; 

如果evdev是第一次打开,就会调用input_open_device()打开evdev对应的handle.跟踪一下这个函数: 
int input_open_device(struct input_handle *handle) 

         struct input_dev *dev = handle->dev; 
         int retval; 
  
         retval = mutex_lock_interruptible(&dev->mutex); 
         if (retval) 
                   return retval; 
  
         if (dev->going_away) { 
                   retval = -ENODEV; 
                   goto out; 
         } 
  
         handle->open++; 
  
         if (!dev->users++ && dev->open) 
                   retval = dev->open(dev); 
  
         if (retval) { 
                   dev->users--; 
                   if (!--handle->open) { 
                            /* 
                             * Make sure we are not delivering any more events 
                             * through this handle 
                             */ 
                            synchronize_rcu(); 
                   } 
         } 
  
 out: 
         mutex_unlock(&dev->mutex); 
         return retval; 

在这个函数中,我们看到.递增handle的打开计数.如果是第一次打开.则调用input device的open()函数. 
  
十一:evdev的事件处理 
经过上面的分析.每当input device上报一个事件时,会将其交给和它匹配的handler的event函数处理.在evdev中.这个event函数对应的代码为: 
static void evdev_event(struct input_handle *handle, 
                            unsigned int type, unsigned int code, int value) 

         struct evdev *evdev = handle->private; 
         struct evdev_client *client; 
         struct input_event event; 
  
         do_gettimeofday(&event.time); 
         event.type = type; 
         event.code = code; 
         event.value = value; 
  
         rcu_read_lock(); 
  
         client = rcu_dereference(evdev->grab); 
         if (client) 
                   evdev_pass_event(client, &event); 
         else 
                   list_for_each_entry_rcu(client, &evdev->client_list, node) 
                            evdev_pass_event(client, &event); 
  
         rcu_read_unlock(); 
  
         wake_up_interruptible(&evdev->wait); 

首先构造一个struct input_event结构.并设备它的type.code,value为处理事件的相关属性.如果该设备被强制设置了handle.则调用如之对应的client. 
我们在open的时候分析到.会初始化clinet并将其链入到evdev->client_list. 这样,就可以通过evdev->client_list找到这个client了. 
对于找到的第一个client都会调用evdev_pass_event( ).代码如下: 
static void evdev_pass_event(struct evdev_client *client, 
                                 struct input_event *event) 

         /* 
          * Interrupts are disabled, just acquire the lock 
          */ 
         spin_lock(&client->buffer_lock); 
         client->buffer[client->head++] = *event; 
         client->head &= EVDEV_BUFFER_SIZE - 1; 
         spin_unlock(&client->buffer_lock); 
  
         kill_fasync(&client->fasync, SIGIO, POLL_IN); 

这里的操作很简单.就是将event保存到client->buffer中.而client->head就是当前的数据位置.注意这里是一个环形缓存区.写数据是从client->head写.而读数据则是从client->tail中读. 
  
十二:设备节点的read处理 
对于evdev设备节点的read操作都会由evdev_read()完成.它的代码如下: 
static ssize_t evdev_read(struct file *file, char __user *buffer, 
                              size_t count, loff_t *ppos) 

         struct evdev_client *client = file->private_data; 
         struct evdev *evdev = client->evdev; 
         struct input_event event; 
         int retval; 
  
         if (count < evdev_event_size()) 
                   return -EINVAL; 
  
         if (client->head == client->tail && evdev->exist && 
             (file->f_flags & O_NONBLOCK)) 
                   return -EAGAIN; 
  
         retval = wait_event_interruptible(evdev->wait, 
                   client->head != client->tail || !evdev->exist); 
         if (retval) 
                   return retval; 
  
         if (!evdev->exist) 
                   return -ENODEV; 
  
         while (retval + evdev_event_size() <= count && 
                evdev_fetch_next_event(client, &event)) { 
  
                   if (evdev_event_to_user(buffer + retval, &event)) 
                            return -EFAULT; 
  
                   retval += evdev_event_size(); 
         } 
  
         return retval; 

首先,它判断缓存区大小是否足够.在读取数据的情况下,可能当前缓存区内没有数据可读.在这里先睡眠等待缓存区中有数据.如果在睡眠的时候,.条件满足.是不会进行睡眠状态而直接返回的. 
然后根据read()提够的缓存区大小.将client中的数据写入到用户空间的缓存区中. 
十三:设备节点的写操作 
同样.对设备节点的写操作是由evdev_write()完成的.代码如下: 
  
static ssize_t evdev_write(struct file *file, const char __user *buffer, 
                               size_t count, loff_t *ppos) 

         struct evdev_client *client = file->private_data; 
         struct evdev *evdev = client->evdev; 
         struct input_event event; 
         int retval; 
  
         retval = mutex_lock_interruptible(&evdev->mutex); 
         if (retval) 
                   return retval; 
  
         if (!evdev->exist) { 
                   retval = -ENODEV; 
                   goto out; 
         } 
  
         while (retval < count) { 
  
                   if (evdev_event_from_user(buffer + retval, &event)) { 
                            retval = -EFAULT; 
                            goto out; 
                   } 
  
                   input_inject_event(&evdev->handle, 
                                        event.type, event.code, event.value); 
                   retval += evdev_event_size(); 
         } 
  
 out: 
         mutex_unlock(&evdev->mutex); 
         return retval; 

首先取得操作设备文件所对应的evdev. 
实际上,这里写入设备文件的是一个event结构的数组.我们在之前分析过,这个结构里包含了事件的type.code和event. 
将写入设备的event数组取出.然后对每一项调用event_inject_event(). 
这个函数的操作和input_event()差不多.就是将第一个参数handle转换为输入设备结构.然后这个设备再产生一个事件. 
代码如下: 
void input_inject_event(struct input_handle *handle, 
                            unsigned int type, unsigned int code, int value) 

         struct input_dev *dev = handle->dev; 
         struct input_handle *grab; 
         unsigned long flags; 
  
         if (is_event_supported(type, dev->evbit, EV_MAX)) { 
                   spin_lock_irqsave(&dev->event_lock, flags); 
  ;                rcu_read_lock(); 

                   grab = rcu_dereference(dev->grab); 
                   if (!grab || grab == handle) 
                            input_handle_event(dev, type, code, value); 
                   rcu_read_unlock(); 
  
                   spin_unlock_irqrestore(&dev->event_lock, flags); 
         } 

我们在这里也可以跟input_event()对比一下,这里设备可以产生任意事件,而不需要和设备所支持的事件类型相匹配. 
由此可见.对于写操作而言.就是让与设备文件相关的输入设备产生一个特定的事件. 
将上述设备文件的操作过程以图的方式表示如下: 
  
 
  
十四:小结 
在这一节点,分析了整个input子系统的架构,各个环节的流程.最后还以evdev为例.将各个流程贯穿在一起.以加深对input子系统的理解.由此也可以看出.linux设备驱动采用了分层的模式.从最下层的设备模型到设备,驱动,总线再到input子系统最后到input device.这样的分层结构使得最上层的驱动不必关心下层是怎么实现的.而下层驱动又为多种型号同样功能的驱动提供了一个统一的接口.

 

你可能感兴趣的:(Linux设备模型之input子系统详解(二))