Spark Catalyst 源码分析

Architecture

Spark Catalyst 源码分析_第1张图片

Ø 把输入的SQL,parse成unresolved logical plan,这一步参考SqlParser的实现


Ø 把unresolved logical plan转化成resolved logical plan,这一步参考analysis的实现


Ø 把resolved logical plan转化成optimized logical plan,这一步参考optimize的实现


Ø 把optimized logical plan转化成physical plan,这一步参考QueryPlanner Strategy的实现


Source Code Module


Rule

Rule是一个抽象类,拥有一个名字,默认为类名。Rule的实现有很多,渗透在不同的处理过程(analyze, optimize)里。

RuleExecutor是规则执行类,下面两个实现会具体讲:
Analyzer
Optimizer

RuleExecutor 支持的策略:一次或多次。用来控制 converge结束的条件。这里的Strategy名字感觉有点误导人。

/**
   * An execution strategy for rules that indicates the maximum number of executions. If the
   * execution reaches fix point (i.e. converge) before maxIterations, it will stop.
   */
  abstract class Strategy { def maxIterations: Int }

  /** A strategy that only runs once. */
  case object Once extends Strategy { val maxIterations = 1 }

  /** A strategy that runs until fix point or maxIterations times, whichever comes first. */
  case class FixedPoint(maxIterations: Int) extends Strategy

RuleExecutor的Batch类和batches变量:
/** A batch of rules. */
  protected case class Batch(name: String, strategy: Strategy, rules: Rule[TreeType]*)

  /** Defines a sequence of rule batches, to be overridden by the implementation. */
  protected val batches: Seq[Batch]
一个batch有多个Rule

batches在apply()里执行的时候,把一个plan丢进来后,用左折叠处理每个batch,最后吐出来一个plan。
converge的条件是达到最大策略次数或者两个TreeNode相等。apply()处理过程如下:
/**
   * Executes the batches of rules defined by the subclass. The batches are executed serially
   * using the defined execution strategy. Within each batch, rules are also executed serially.
   */
  def apply(plan: TreeType): TreeType = {
    var curPlan = plan

    batches.foreach { batch =>
      var iteration = 1 
      var lastPlan = curPlan
      curPlan = batch.rules.foldLeft(curPlan) { case (plan, rule) => rule(plan) }

      // Run until fix point (or the max number of iterations as specified in the strategy.
      while (iteration < batch.strategy.maxIterations && !curPlan.fastEquals(lastPlan)) {
        lastPlan = curPlan
        curPlan = batch.rules.foldLeft(curPlan) {
          case (plan, rule) =>
            val result = rule(plan)
            if (!result.fastEquals(plan)) {
              logger.debug(...)
            }
            result
        }
        iteration += 1
      }
    }
    curPlan
  }

下面具体介绍RuleExecutor的实现。

Analyzer

Analyzer使用于对最初的unresolved logical plan转化成为logical plan。这部分的分析会涵盖整个analysis package。

作用是把未确定的属性和关系,通过Schema信息(来自于Catalog类)和方法注册类来确定下来,这个过程中有三步,第三步会包含许多次的迭代。

/**
 * Provides a logical query plan analyzer, which translates [[UnresolvedAttribute]]s and
 * [[UnresolvedRelation]]s into fully typed objects using information in a schema [[Catalog]] and
 * a [[FunctionRegistry]].
 */
class Analyzer(catalog: Catalog, registry: FunctionRegistry, caseSensitive: Boolean)
  extends RuleExecutor[LogicalPlan] with HiveTypeCoercion {

首先,Catalog类是一个记录表信息的类,专门提供给Analyzer用。
trait Catalog {
  def lookupRelation(
    databaseName: Option[String],
    tableName: String,
    alias: Option[String] = None): LogicalPlan

  def registerTable(databaseName: Option[String], tableName: String, plan: LogicalPlan): Unit
}

看一个SimpleCatalog的实现,该类在SQLContext里使用, 把表名和LogicalPlan存在HashMap里维护起来,生命周期随上下文。提供注册表、删除表、查找表的功能。
class SimpleCatalog extends Catalog {
  val tables = new mutable.HashMap[String, LogicalPlan]()

  def registerTable(databaseName: Option[String],tableName: String, plan: LogicalPlan): Unit = {
    tables += ((tableName, plan))
  }

  def dropTable(tableName: String) = tables -= tableName

  def lookupRelation(
      databaseName: Option[String],
      tableName: String,
      alias: Option[String] = None): LogicalPlan = {
    val table = tables.get(tableName).getOrElse(sys.error(s"Table Not Found: $tableName"))

    // If an alias was specified by the lookup, wrap the plan in a subquery so that attributes are
    // properly qualified with this alias.
    alias.map(a => Subquery(a.toLowerCase, table)).getOrElse(table)
  }
}

在查找的时候可以代入一个别名,会把他包装成一个Subquery。Subquery是个简单的case class。
case class Subquery(alias: String, child: LogicalPlan) extends UnaryNode {
  def output = child.output.map(_.withQualifiers(alias :: Nil))
  def references = Set.empty
}

FunctionRegistry类似于Catalog,记录的是函数,在hive package里,处理的是Hive的UDF
trait FunctionRegistry {
  def lookupFunction(name: String, children: Seq[Expression]): Expression
}

FunctionRegistry的实现在Catalyst里目前只有一个(在Hive模块里有实现,具体在最后一节Hive内),如下,如果你要查找方法,就会抛异常。
/**
 * A trivial catalog that returns an error when a function is requested.  Used for testing when all
 * functions are already filled in and the analyser needs only to resolve attribute references.
 */
object EmptyFunctionRegistry extends FunctionRegistry {
  def lookupFunction(name: String, children: Seq[Expression]): Expression = {
    throw new UnsupportedOperationException
  }
}

回到Analyzer,SQLContext在使用Analyzer前,这样生成:
@transient
protected[sql] lazy val catalog: Catalog = new SimpleCatalog
protected[sql] lazy val analyzer: Analyzer =
    new Analyzer(catalog, EmptyFunctionRegistry, caseSensitive = true)

接下来看Catalyst现在的Analyzer作为一个RuleExecutor,已经实现的功能:
class Analyzer(catalog: Catalog, registry: FunctionRegistry, caseSensitive: Boolean)
  extends RuleExecutor[LogicalPlan] with HiveTypeCoercion {

  // TODO: pass this in as a parameter.
  val fixedPoint = FixedPoint(100)

  val batches: Seq[Batch] = Seq(
    Batch("MultiInstanceRelations", Once,
      NewRelationInstances),
    Batch("CaseInsensitiveAttributeReferences", Once,
      (if (caseSensitive) Nil else LowercaseAttributeReferences :: Nil) : _*),
    Batch("Resolution", fixedPoint,
      ResolveReferences ::
      ResolveRelations ::
      NewRelationInstances ::
      ImplicitGenerate ::
      StarExpansion ::
      ResolveFunctions ::
      GlobalAggregates ::
      typeCoercionRules :_*)
  )

下面分别分析三个batch里面的Rule做的事情。

Batch One

首先是第一个batch里的NewRelationInstance这条Rule,他的作用就是避免一个逻辑计划上同一个实例出现多次,如果出现就生成一个新的plan,保证每个表达式id都唯一。

/**
 * If any MultiInstanceRelation appears more than once in the query plan then the plan is updated so
 * that each instance has unique expression ids for the attributes produced.
 */
object NewRelationInstances extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = {
    val localRelations = plan collect { case l: MultiInstanceRelation => l} // 这一步是搜集所有的多实例关系
    val multiAppearance = localRelations
      .groupBy(identity[MultiInstanceRelation])
      .filter { case (_, ls) => ls.size > 1 }
      .map(_._1)
      .toSet // 这一步是做过滤

    plan transform { // 这一步是把原来plan里的多实例关系,凡是出现多个,就变成一个新的单一实例
      case l: MultiInstanceRelation if multiAppearance contains l => l.newInstance
    }
  }
}

LogicalPlan本身是TreeNode的子类,TreeNode具备collect等一些scala collection操作的能力,这个例子里第一步搜集的过程中体现了collect能力。

TreeNode是Catalyst里的重要基础类,后面有小节会具体讲。

Batch Two

第二个batch是大小写相关的,如果对大小写不敏感,那么就执行LowercaseAttributeReferences这条Rule,会把所有的属性都变成小写

/**
   * Makes attribute naming case insensitive by turning all UnresolvedAttributes to lowercase.
   */
  object LowercaseAttributeReferences extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case UnresolvedRelation(databaseName, name, alias) => // 第一类:未确定的关系
        UnresolvedRelation(databaseName, name, alias.map(_.toLowerCase))
      case Subquery(alias, child) => Subquery(alias.toLowerCase, child) // 第二类:子查询
      case q: LogicalPlan => q transformExpressions { // 第三类: 其他类型
        case s: Star => s.copy(table = s.table.map(_.toLowerCase))  // 指的是 * 号
        case UnresolvedAttribute(name) => UnresolvedAttribute(name.toLowerCase) // 未确定的属性
        case Alias(c, name) => Alias(c, name.toLowerCase)() // 别名
      }
    }
  }

transform,transformExpressions是TreeNode提供的方法,用于前序遍历树(pre-order)。

从这个处理可以看到logicalPlan里面包含的种类。后续Expression这一块具体还要展开介绍。

Alias的一点注释:

/**
 * Used to assign a new name to a computation.
 * For example the SQL expression "1 + 1 AS a" could be represented as follows:
 *  Alias(Add(Literal(1), Literal(1), "a")()
 *

Batch Three

Resulotion是第三类batch,定义的结束条件是循环100次。下面是我加的注释,大致介绍Rule的作用,并挑选几个Rule的实现介绍。

Batch("Resolution", fixedPoint,
      ResolveReferences :: // 确定属性
      ResolveRelations :: // 确定关系(从catalog里)
      NewRelationInstances :: // 去掉同一个实例出现多次的情况
      ImplicitGenerate :: // 把包含Generator且只有一条的表达式转化成Generate操作
      StarExpansion :: // 扩张 * 
      ResolveFunctions :: // 确定方法(从FunctionRegistry里)
      GlobalAggregates :: // 把包含Aggregate的表达式转化成Aggregate操作
      typeCoercionRules :_*) // 来自于HiveTypeCoercion,主要针对Hive语法做强制转换,包含多种规则

用post-order遍历树,把未确定的属性确定下来。如果没有做成功,未确定的属性依然会留下来,留给下一次迭代的时候再确定。

/**
   * Replaces [[UnresolvedAttribute]]s with concrete
   * [[expressions.AttributeReference AttributeReferences]] from a logical plan node's children.
   */
  object ResolveReferences extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transformUp {
      case q: LogicalPlan if q.childrenResolved =>
        logger.trace(s"Attempting to resolve ${q.simpleString}")
        q transformExpressions {
          case u @ UnresolvedAttribute(name) =>
            // Leave unchanged if resolution fails.  Hopefully will be resolved next round.
            val result = q.resolve(name).getOrElse(u)
            logger.debug(s"Resolving $u to $result")
            result
        }
    }
  }

确定是通过LogicalPlan的resolve方法做的。这个具体在LogicalPlan里介绍,resolve方法是LogicalPlan的唯一且重要方法。


从catalog里查找关系

/**
   * Replaces [[UnresolvedRelation]]s with concrete relations from the catalog.
   */
  object ResolveRelations extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case UnresolvedRelation(databaseName, name, alias) =>
        catalog.lookupRelation(databaseName, name, alias)
    }
  }

Generator是表达式的一种,根据一种inputrow产生0个或多个rows。

/**
   * When a SELECT clause has only a single expression and that expression is a
   * [[catalyst.expressions.Generator Generator]] we convert the
   * [[catalyst.plans.logical.Project Project]] to a [[catalyst.plans.logical.Generate Generate]].
   */
  object ImplicitGenerate extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case Project(Seq(Alias(g: Generator, _)), child) =>
        Generate(g, join = false, outer = false, None, child)
    }
  }

确定方法类似确定关系。

/**
   * Replaces [[UnresolvedFunction]]s with concrete [[expressions.Expression Expressions]].
   */
  object ResolveFunctions extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case q: LogicalPlan =>
        q transformExpressions {
          case u @ UnresolvedFunction(name, children) if u.childrenResolved =>
            registry.lookupFunction(name, children)
        }
    }
  }


换针对Hive语法做强制转换,规则如下

trait HiveTypeCoercion {
  val typeCoercionRules = List(PropagateTypes, ConvertNaNs, WidenTypes, PromoteStrings, BooleanComparisons, BooleanCasts, StringToIntegralCasts, FunctionArgumentConversion)

举个简单的例子来看下表达式的使用和替换:

/**
   * Converts string "NaN"s that are in binary operators with a NaN-able types (Float / Double) * to the appropriate numeric equivalent.
   */
  object ConvertNaNs extends Rule[LogicalPlan] {
    val stringNaN = Literal("NaN", StringType)

    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case q: LogicalPlan => q transformExpressions {
        // Skip nodes who's children have not been resolved yet.
        case e if !e.childrenResolved => e

        /* Double Conversions */
        case b: BinaryExpression if b.left == stringNaN && b.right.dataType == DoubleType =>
          b.makeCopy(Array(b.right, Literal(Double.NaN)))
        case b: BinaryExpression if b.left.dataType == DoubleType && b.right == stringNaN =>
          b.makeCopy(Array(Literal(Double.NaN), b.left))
        case b: BinaryExpression if b.left == stringNaN && b.right == stringNaN =>
          b.makeCopy(Array(Literal(Double.NaN), b.left))

        /* Float Conversions */
        case b: BinaryExpression if b.left == stringNaN && b.right.dataType == FloatType =>
          b.makeCopy(Array(b.right, Literal(Float.NaN)))
        case b: BinaryExpression if b.left.dataType == FloatType && b.right == stringNaN =>
          b.makeCopy(Array(Literal(Float.NaN), b.left))
        case b: BinaryExpression if b.left == stringNaN && b.right == stringNaN =>
          b.makeCopy(Array(Literal(Float.NaN), b.left))
      }
    }
  }

Optimizer

Optimizer用于把analyzedplan转化成为optimized plan。目前Catalyst的optimizer包下就这一个类,SQLContext也是直接使用的这个类。

同样,我们看一下里面包括了哪些处理过程:

object Optimizer extends RuleExecutor[LogicalPlan] {
  val batches =
    Batch("Subqueries", Once,
      EliminateSubqueries) ::
    Batch("ConstantFolding", Once,
      ConstantFolding,
      BooleanSimplification,
      SimplifyCasts) ::
    Batch("Filter Pushdown", Once,
      EliminateSubqueries,
      CombineFilters,
      PushPredicateThroughProject,
      PushPredicateThroughInnerJoin) :: Nil
}


Batch One

和子查询相关的一批规则,包含一条消除子查询的规则:EliminateSubqueries

/**
 * Removes [[catalyst.plans.logical.Subquery Subquery]] operators from the plan.  Subqueries are
 * only required to provide scoping information for attributes and can be removed once analysis is
 * complete.
 */
object EliminateSubqueries extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan transform {
    case Subquery(_, child) => child // 处理方式是凡是带child的,都用child替换自己
  }
}

注释提到,过了analysis这一步之后,子查询就可以移除了。


Batch Two

第二批规则,常量折叠

Batch("ConstantFolding", Once,
      ConstantFolding, // 常量折叠
      BooleanSimplification, // 提早短路掉布尔表达式
      SimplifyCasts) // 去掉多余的Cast操作

具体看:
/**
 * Replaces [[catalyst.expressions.Expression Expressions]] that can be statically evaluated with
 * equivalent [[catalyst.expressions.Literal Literal]] values.
 */
object ConstantFolding extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan transform {
    case q: LogicalPlan => q transformExpressionsDown {
      // Skip redundant folding of literals.
      case l: Literal => l
      case e if e.foldable => Literal(e.apply(null), e.dataType)
    }
  }
}

这里不得不提一下foldable字段在Expression类里的定义:

/**
   * Returns true when an expression is a candidate for static evaluation before the query is
   * executed.
   *
   * The following conditions are used to determine suitability for constant folding:
   *  - A [[expressions.Coalesce Coalesce]] is foldable if all of its children are foldable
   *  - A [[expressions.BinaryExpression BinaryExpression]] is foldable if its both left and right
   *    child are foldable
   *  - A [[expressions.Not Not]], [[expressions.IsNull IsNull]], or
   *    [[expressions.IsNotNull IsNotNull]] is foldable if its child is foldable.
   *  - A [[expressions.Literal]] is foldable.
   *  - A [[expressions.Cast Cast]] or [[expressions.UnaryMinus UnaryMinus]] is foldable if its
   *    child is foldable.
   */
  // TODO: Supporting more foldable expressions. For example, deterministic Hive UDFs.
  def foldable: Boolean = false
只有Literal表达式是foldable的,其余表达式必须表达式中每个元素都满足foldable。

第二种规则也好理解,简化布尔表达式。也就是早早地给表达式做一个短路判断。

/**
 * Simplifies boolean expressions where the answer can be determined without evaluating both sides.
 * Note that this rule can eliminate expressions that might otherwise have been evaluated and thus
 * is only safe when evaluations of expressions does not result in side effects.
 */
object BooleanSimplification extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan transform {
    case q: LogicalPlan => q transformExpressionsUp {
      case and @ And(left, right) =>
        (left, right) match {
          case (Literal(true, BooleanType), r) => r
          case (l, Literal(true, BooleanType)) => l
          case (Literal(false, BooleanType), _) => Literal(false)
          case (_, Literal(false, BooleanType)) => Literal(false)
          case (_, _) => and
        }

      case or @ Or(left, right) =>
        (left, right) match {
          case (Literal(true, BooleanType), _) => Literal(true)
          case (_, Literal(true, BooleanType)) => Literal(true)
          case (Literal(false, BooleanType), r) => r
          case (l, Literal(false, BooleanType)) => l
          case (_, _) => or
        }
    }
  }
}

把Cast操作全部移走。

/**
 * Removes [[catalyst.expressions.Cast Casts]] that are unnecessary because the input is already
 * the correct type.
 */
object SimplifyCasts extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan transformAllExpressions {
    case Cast(e, dataType) if e.dataType == dataType => e
  }
}

Batch Three

一批 过滤下推 规则,

Batch("Filter Pushdown", Once,
      EliminateSubqueries, // 消除子查询
      CombineFilters, // 过滤操作取合集
      PushPredicateThroughProject, // 为映射操作下推谓词
      PushPredicateThroughInnerJoin) // 为inner join下推谓词

具体不一一列举了。

SQLContext

SQLContext的这一个RuleExecutor实现已经到了物理执行计划SparkPlan的处理了。也是一种实现,注册了自己的batch,如下:
/**
   * Prepares a planned SparkPlan for execution by binding references to specific ordinals, and
   * inserting shuffle operations as needed.
   */
  @transient
  protected[sql] val prepareForExecution = new RuleExecutor[SparkPlan] {
    val batches =
      Batch("Add exchange", Once, AddExchange) ::
      Batch("Prepare Expressions", Once, new BindReferences[SparkPlan]) :: Nil
  }


以上就是Rule包,及RuleExecutor在各处的实现。其中Analyze和Optimize是Catalyst目前提供的,SQL组件直接拿来使用。

TreeNode

TreeNode Library支持的三个特性:

    · Scala collection like methods (foreach, map, flatMap, collect, etc)

    · transform accepts a partial function that is used to generate a newtree.

    · debugging support pretty printing, easy splicing of trees, etc.

Collection操作能力

偏函数


继承结构
Spark Catalyst 源码分析_第2张图片

全局唯一id

object TreeNode {
  private val currentId = new java.util.concurrent.atomic.AtomicLong
  protected def nextId() = currentId.getAndIncrement()
}

几种节点

/**
 * A [[TreeNode]] that has two children, [[left]] and [[right]].
 */
trait BinaryNode[BaseType <: TreeNode[BaseType]] {
  def left: BaseType
  def right: BaseType

  def children = Seq(left, right)
}

/**
 * A [[TreeNode]] with no children.
 */
trait LeafNode[BaseType <: TreeNode[BaseType]] {
  def children = Nil
}

/**
 * A [[TreeNode]] with a single [[child]].
 */
trait UnaryNode[BaseType <: TreeNode[BaseType]] {
  def child: BaseType
  def children = child :: Nil
}

每个node唯一id,导致在比较的时候,不同分支上长得一样结构的node也不相同,比较如下:

  def sameInstance(other: TreeNode[_]): Boolean = {
    this.id == other.id
  }

  def fastEquals(other: TreeNode[_]): Boolean = {
    sameInstance(other) || this == other
  }

foreach的时候,先做自己,再把孩子们做一遍
def foreach(f: BaseType => Unit): Unit = {
    f(this)
    children.foreach(_.foreach(f))
  }

map的时候是按前序对每个节点都做一次处理

def map[A](f: BaseType => A): Seq[A] = {
    val ret = new collection.mutable.ArrayBuffer[A]()
    foreach(ret += f(_))
    ret
  }

其他的很多变化都类似,接收的是函数或偏函数,把他们作用到匹配的节点上去执行

变化总共有这些,按类别分:

map, flatMap, collect,

mapChildren,  withNewChildren,

transform, transformDown, transformChildrenDown 前序

                    transformUp,  transformChildrenUp          后序

基本上就这些,其实就是提供对这棵树及其子节点的顺序遍历和处理能力


Plan

QueryPlan的继承结构

Spark Catalyst 源码分析_第3张图片

QueryPlan提供了三个东西,

Ø  其一是定义了output,是对外输出的一个属性序列

    def output:Seq[Attribute]


Ø  其二是借用TreeNode的那套transform方法,实现了一套transformExpression方法,用途是把partialfunction遍历到各个子节点上。

 

Ø  其三是一个expressions方法,返回Seq[expression],用于搜集本query里所有的表达式。

 

QueryPlanCatalyst里的实现是LogicalPlan,在SQL组件里的实现是SparkPlan,前者主要要被处理、分析和优化,后者是真正被处理执行的,下面简单介绍两者。


Logical Plan

在QueryPlan上增加的几个属性:

1.      references 用于生成output属性列表的参考属性列表

          def references: Set[Attribute]

 

2.      lazy val inputSet: Set[Attribute] = children.flatMap(_.output).toSet

 

3.      自己及children是否resolved

 

4.      resolve方法,重要,看起来费劲

def resolve(name: String): Option[NamedExpression] = {
    val parts = name.split("\\.")
    // Collect all attributes that are output by this nodes children where either the first part
    // matches the name or where the first part matches the scope and the second part matches the
    // name.  Return these matches along with any remaining parts, which represent dotted access to
    // struct fields.
    val options = children.flatMap(_.output).flatMap { option =>
      // If the first part of the desired name matches a qualifier for this possible match, drop it.
      val remainingParts = if (option.qualifiers contains parts.head) parts.drop(1) else parts
      if (option.name == remainingParts.head) (option, remainingParts.tail.toList) :: Nil else Nil
    }

    options.distinct match {
      case (a, Nil) :: Nil => Some(a) // One match, no nested fields, use it.
      // One match, but we also need to extract the requested nested field.
      case (a, nestedFields) :: Nil =>
        a.dataType match {
          case StructType(fields) =>
            Some(Alias(nestedFields.foldLeft(a: Expression)(GetField), nestedFields.last)())
          case _ => None // Don't know how to resolve these field references
        }
      case Nil => None         // No matches.
      case ambiguousReferences =>
        throw new TreeNodeException(
          this, s"Ambiguous references to $name: ${ambiguousReferences.mkString(",")}")
    }
  }

三种抽象子类:

/**
 * A logical plan node with no children.
 */
abstract class LeafNode extends LogicalPlan with trees.LeafNode[LogicalPlan] {
  self: Product =>
  // Leaf nodes by definition cannot reference any input attributes.
  def references = Set.empty
}

/**
 * A logical plan node with single child.
 */
abstract class UnaryNode extends LogicalPlan with trees.UnaryNode[LogicalPlan] {
  self: Product =>
}

/**
 * A logical plan node with a left and right child.
 */
abstract class BinaryNode extends LogicalPlan with trees.BinaryNode[LogicalPlan] {
  self: Product =>
}

分别看LogicalPlan的三种Node的实现结构:LeafNode,UnaryNode,BinaryNode


LeafNode

/**
 * A logical node that represents a non-query command to be executed by the system.  For example,
 * commands can be used by parsers to represent DDL operations.
 */
abstract class Command extends LeafNode {
  self: Product => 
  def output = Seq.empty
}

/**
 * Returned for commands supported by a given parser, but not catalyst.  In general these are DDL
 * commands that are passed directly to another system.
 */
case class NativeCommand(cmd: String) extends Command

/**
 * Returned by a parser when the users only wants to see what query plan would be executed, without
 * actually performing the execution.
 */
case class ExplainCommand(plan: LogicalPlan) extends Command

case object NoRelation extends LeafNode {
  def output = Nil
}

对于Command和BaseRelation,在sql.hive包内有更多实现


MetastoreRelation的作用在Hive一节会说明。

Spark Catalyst 源码分析_第4张图片
Command略。

UnaryNode
Spark Catalyst 源码分析_第5张图片

BinaryNode


Spark Plan

SparkPlan类继承结构如下图:

Spark Catalyst 源码分析_第6张图片

在SQL模块的execution package的basicOperator类里,有许多SparkPlan的实现,包括

Project,Filter,Sample,Union,StopAfter,TopK,Sort,ExsitingRdd

 

这些实现和Catalyst的basicOperator类里有很多重了,区别在于,SparkPlanQueryPlan的实现,同logical plan不同的是,SparkPlan会被Spark实现的Strategy真正执行,所以SQL模块里的basicOperator内的这些caseclass,比Catalyst多了execute()方法

 

具体Spark策略的实现参考下一小节。


Planning


Query Planner

QueryPlanner的职责是把逻辑执行计划转化成为物理执行计划,具备一系列Strategy的实现



abstract class QueryPlanner[PhysicalPlan <: TreeNode[PhysicalPlan]] {
  /** A list of execution strategies that can be used by the planner */
  def strategies: Seq[Strategy]

  /**
   * Given a [[plans.logical.LogicalPlan LogicalPlan]], returns a list of `PhysicalPlan`s that can
   * be used for execution. If this strategy does not apply to the give logical operation then an
   * empty list should be returned.
   */
  abstract protected class Strategy extends Logging {
    def apply(plan: LogicalPlan): Seq[PhysicalPlan]
  }

  /**
   * Returns a placeholder for a physical plan that executes `plan`. This placeholder will be
   * filled in automatically by the QueryPlanner using the other execution strategies that are
   * available.
   */
  protected def planLater(plan: LogicalPlan) = apply(plan).next()

  def apply(plan: LogicalPlan): Iterator[PhysicalPlan] = {
    // Obviously a lot to do here still...
    val iter = strategies.view.flatMap(_(plan)).toIterator
    assert(iter.hasNext, s"No plan for $plan")
    iter
  }
}

QueryPlanner impl

目前的实现是SparkStrategies

在SQLContext里的使用是SparkPlanner:

protected[sql] class SparkPlanner extends SparkStrategies {
    val sparkContext = self.sparkContext

    val strategies: Seq[Strategy] =
      TopK ::
      PartialAggregation ::
      SparkEquiInnerJoin ::
      BasicOperators ::
      CartesianProduct ::
      BroadcastNestedLoopJoin :: Nil
  }

在HiveContext里的使用是带了hive策略的SparkPlanner:

val hivePlanner = new SparkPlanner with HiveStrategies {
    val hiveContext = self

    override val strategies: Seq[Strategy] = Seq(
      TopK,
      ColumnPrunings,
      PartitionPrunings,
      HiveTableScans,
      DataSinks,
      Scripts,
      PartialAggregation,
      SparkEquiInnerJoin,
      BasicOperators,
      CartesianProduct,
      BroadcastNestedLoopJoin
    )
  }

Strategy & impl

Strategy的实现主要包含Spark Strategy和Hive Strategy。前者基本上对应了sql.execution包里的类。后者是在Spark策略的基础上附加的一些策略。

Expression

Expression几个属性:

1.      带DataType,并且自带一些inline方法帮助一些dataType的转换

2.      带reference,reference是Seq[Attribute],Attribute是NamedExpression子类。

3.      foldable ,即静态可以直接执行的表达式

Expression里只有Literal可折叠,Literal是LeafExpression,根据dataType生成不同类型表达式

object Literal {
  def apply(v: Any): Literal = v match {
    case i: Int => Literal(i, IntegerType)
    case l: Long => Literal(l, LongType)
    case d: Double => Literal(d, DoubleType)
    case f: Float => Literal(f, FloatType)
    case b: Byte => Literal(b, ByteType)
    case s: Short => Literal(s, ShortType)
    case s: String => Literal(s, StringType)
    case b: Boolean => Literal(b, BooleanType)
    case null => Literal(null, NullType)
  }
}

case class Literal(value: Any, dataType: DataType) extends LeafExpression {

  override def foldable = true
  def nullable = value == null
  def references = Set.empty

  override def toString = if (value != null) value.toString else "null"

  type EvaluatedType = Any
  override def apply(input: Row):Any = value // 执行这个叶子表达式的话就是返回value值
}

4.      resolved 具体关心children是否都resolved。

childeren是TreeNode里的概念,在TreeNode里是一个Seq[BaseType],而BaseType是TreeNode[T]里的范型。在Expression这里,即TreeNode[Expression],BaseType就是Expression。


Expression继承结构



抽象子类如下:

abstract class BinaryExpression extends Expression with trees.BinaryNode[Expression] {
  self: Product =>
  def symbol: String
  override def foldable = left.foldable && right.foldable
  def references = left.references ++ right.references
  override def toString = s"($left $symbol $right)"
}

abstract class LeafExpression extends Expression with trees.LeafNode[Expression] {
  self: Product =>
}

abstract class UnaryExpression extends Expression with trees.UnaryNode[Expression] {
  self: Product =>
  def references = child.references
}

Expression impl


SchemaRDD

SchemaRDD是一个RDD[Row],Row在Catalyst对应的是Table里的一行,定义是

trait Row extends Seq[Any] with Serializable

SchemaRDD就两部分实现,还有几个SQLContext的方法调用

一是RDD的Function的实现

  // =========================================================================================
  // RDD functions: Copy the interal row representation so we present immutable data to users.
  // =========================================================================================
  override def compute(split: Partition, context: TaskContext): Iterator[Row] =
    firstParent[Row].compute(split, context).map(_.copy())

  override def getPartitions: Array[Partition] = firstParent[Row].partitions

  override protected def getDependencies: Seq[Dependency[_]] =
    List(new OneToOneDependency(queryExecution.toRdd))  // 该SchemaRDD与优化后的RDD是窄依赖

二是DSL function的实现,如

def select(exprs: NamedExpression*): SchemaRDD =
    new SchemaRDD(sqlContext, Project(exprs, logicalPlan))

每次DSL的操作会转化成为新的SchemaRDD,

SchemaRDD的DSL操作与Catalyst组件提供的操作的对应关系为

Spark Catalyst 源码分析_第7张图片

DSL Operator的实现都依赖Catalyst的basicOperator,basicOperator里的操作都是LogicalPlan的继承类,主要分两类,一元UnaryNode和二元BinaryNode操作。而UnaryNode和BinaryNode都是TreeNode的实现,TreeNode里还有一种就是LeafNode。

basicOperator的各种实现都是caseclass,都是LogicalPlan,不具备execute能力


Spark Catalyst 源码分析_第8张图片


Hive


Hive Context

HiveContext是Spark SQL执行引擎之一,将hive数据结合到Spark环境中,读取的配置在hive-site.xml里指定。

继承关系



HiveContext里的sql parser使用的是HiveQl,

 

执行hql的时候,runHive方法接收cmd,且设置了最大返回行数

protected def runHive(cmd: String, maxRows: Int = 1000): Seq[String]

调用的方法是hive里的类,返回结果存在java的ArrayList里

 

错误日志会记录在outputBuffer里,用于打印输出


逻辑执行计划的几个步骤仍然类似SqlContext,因为QueryExecution也继承了过来

abstract class QueryExecution extends super.QueryExecution {

区别在于使用的实例不一样,且toRdd操作逻辑不一样


Hive Catalog


使用HiveMetastoreCatalog存表信息

 

HiveMetastoreCatalog内,通过HiveContext的hiveconf,创建了hiveclient,所以可以进行getTable,getPartition,createTable操作

 

HiveMetastoreCatalog内的MetastoreRelation,继承结构如下


通过hive的接口创建了Table,Partition,TableDesc,并带一个隐式转换HiveMetastoreTypes类,因为在把Schema里的Field转成Attribute的过程中,借助HiveMetastoreTypes的toDataType把Catalyst支持的DataType parse成hive支持的类型


Hive QL

参考HiveQl类

Hive UDF

object HiveFunctionRegistry
  extends analysis.FunctionRegistry with HiveFunctionFactory with HiveInspectors {

继承FunctionRegistry,实现的是lookupFunction方法


HiveFunctionFactory主要做反射的事情,以及把hive的类型转化成为catalyst type

包括

  def getFunctionInfo(name: String) = FunctionRegistry.getFunctionInfo(name)
  def getFunctionClass(name: String) = getFunctionInfo(name).getFunctionClass
  def createFunction[UDFType](name: String) =
    getFunctionClass(name).newInstance.asInstanceOf[UDFType]

HiveInspectors是Catalyst DataType和Hive ObjectInspector的转化


Java类到Catalyst dataType的转化

def javaClassToDataType(clz: Class[_]): DataType = clz match 

Hive Strategy

val hivePlanner = new SparkPlanner with HiveStrategies {
    val hiveContext = self

    override val strategies: Seq[Strategy] = Seq(
      TopK,
      ColumnPrunings,
      PartitionPrunings,
      HiveTableScans,
      DataSinks,
      Scripts,
      PartialAggregation,
      SparkEquiInnerJoin,
      BasicOperators,
      CartesianProduct,
      BroadcastNestedLoopJoin
    )
  }


Summary

之前的那篇 Spark SQL组件源码分析走读了SQLContext的整个执行过程,有很多内容不够具体。本文结合Catalyst,做了更详细的说明。


全文完 :)

你可能感兴趣的:(源码,spark)