- 上万个Map运行时链接ApplicationMaster超时FAILED
500佰
大数据云计算bigdatamapreduce
#MapReduce业务常见故障#大数据#生产环境真实案例#MapReduce#批计算#离线业务#整理#经验总结说明:此篇总结MapReduce业务常见故障案例处理方案结合自身经历总结不易+关注+收藏欢迎留言更多专题(详见):MapReduce计算引擎详解--项目优化(指导书)上万个Map运行时链接ApplicationMaster超时FAILED症状Mapreduce任务会并发起几万个map,会
- hive 数字转换字符串_Hive架构及Hive SQL的执行流程解读
weixin_39756416
hive数字转换字符串
1、Hive产生背景MapReduce编程的不便性HDFS上的文件缺少Schema(表名,名称,ID等,为数据库对象的集合)2、Hive是什么Hive的使用场景是什么?基于Hadoop做一些数据清洗啊(ETL)、报表啊、数据分析可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。Hive是SQL解析引擎,它将SQL语句转译成M/RJob然后在Hadoop执行。由Facebook开源,
- mySQL和Hive的区别
iijik55
面试学习路线阿里巴巴hivemysql大数据tomcat面试
SQL和HQL的区别整体1、存储位置:Hive在Hadoop上;Mysql将数据存储在设备或本地系统中;2、数据更新:Hive不支持数据的改写和添加,是在加载的时候就已经确定好了;数据库可以CRUD;3、索引:Hive无索引,每次扫描所有数据,底层是MR,并行计算,适用于大数据量;MySQL有索引,适合在线查询数据;4、执行:Hive底层是MapReduce;MySQL底层是执行引擎;5、可扩展性
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- Hadoop的运行模式
对许
#Hadoophadoop大数据分布式
Hadoop的运行模式1、本地运行模式2、伪分布式运行模式3、完全分布式运行模式4、区别与总结Hadoop有三种可以运行的模式:本地运行模式、伪分布式运行模式和完全分布式运行模式1、本地运行模式本地运行模式无需任何守护进程,单机运行,所有的程序都运行在同一个JVM上执行Hadoop安装后默认为本地模式,数据存储在Linux本地。在本地模式下调试MapReduce程序非常高效方便,一般该模式主要是在
- Hadoop的mapreduce的执行过程
画纸仁
大数据hadoopmapreduce大数据
一、map阶段的执行过程第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划。默认Splitsize=Blocksize(128M),每一个切片由一个MapTask处理。(getSplits)第二阶段:对切片中的数据按照一定的规则读取解析返回对。默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat)第三阶段:调用Mapp
- Hadoop:分布式计算平台初探
dccrtbn6261333
大数据运维java
Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。MapReduceMapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释M
- 探秘开源项目 MapReduce:分布式计算的新篇章
褚知茉Jade
探秘开源项目MapReduce:分布式计算的新篇章去发现同类优质开源项目:https://gitcode.com/在大数据处理领域,一个名字始终熠熠生辉,那就是。这是一个由Google提出的并被广泛应用的编程模型,用于大规模数据集的并行计算。本文将带你深入了解这一开源实现的魅力,分析其技术原理,探讨它的应用场景,并揭示它独特的特性。项目简介该项目是ChubbyJiang对原始GoogleMapRe
- MapReduce:分布式并行编程的基石
JAZJD
mapreduce分布式大数据
目录概述分布式并行编程分布式并行编程模型分布式并行编程框架MapReduce模型简介Map和Reduce函数Map函数Map函数的输入和输出Map函数的常见操作Reduce函数Reduce函数的输入和输出Reduce函数的常见操作工作流程概述各个阶段1.输入分片2.Map阶段3.Shuffle阶段4.Reduce阶段MapReduce工作流程总结Shuffle过程详解1.分区(Partitioni
- MapReduce:分布式计算的基石
Earth explosion
mapreduce大数据
MapReduce是一种用于处理和生成大数据集的编程模型,以及一个用于执行该模型的关联实现。它使得在大型商用硬件集群(数千台机器)上进行并行处理海量数据成为可能。本文将深入探讨MapReduce的核心概念、工作原理、应用场景以及一些高级主题。核心概念:分而治之MapReduce的核心思想是“分而治之”。它将复杂的计算任务分解成两个主要阶段:Map阶段和Reduce阶段。Map阶段:输入数据被分割成
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- Hadoop介绍:什么是Hadoop?了解Hadoop的应用
Zzzxt007
hadoop大数据分布式
一、认识Hadoop框架Hadoop是一个提供分布式存储和计算的开源软件框架,使用Java语言编写,具有高扩展性、高容错性、无共享和高可用(HA)等特点,非常适合处理海量数据。它基于Google发布的MapReduce论文实现,并且应用了函数式编程的思想。Hadoop框架主要包括HDFS(HadoopDistributedFileSystem,Hadoop分布式文件系统)、MapReduce、YA
- 【Hadoop】详解HDFS
2302_79952574
hadoophdfs大数据
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件上的分布式文件系统,它是一个高度容错性的系统,适合部署在廉价的机器上,能够提供高吞吐量的数据访问,非常适合大规模数据集上的应用。为了做到可靠性,HDFS创建了多份数据块的副本,并将它们放置在服务器群的计算节点中,MapReduce可以在它们所在的节点上处理这些数据。1.HDFS的设计目标存储大规模数据:HDFS可以存储并管理PB级甚至
- hadoop框架与核心组件刨析(四)MapReduce
小刘爱喇石( ˝ᗢ̈˝ )
hadoopmapreduce大数据
MapReduce是一种用于大规模数据处理的编程模型和计算框架,最初由Google提出,后来由ApacheHadoop实现并广泛应用。它的核心思想是将数据处理任务分解为两个阶段:Map和Reduce,并通过分布式计算并行处理海量数据。MapReduce的核心思想分而治之:将大规模数据集分割成多个小块,分布到集群中的多个节点上并行处理。Map阶段:将输入数据转换为键值对(Key-ValuePair)
- hadoop运行java程序命令_使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0
emi0wb
网上的MapReduceWordCount教程对于如何编译WordCount.java几乎是一笔带过…而有写到的,大多又是0.20等旧版本版本的做法,即javac-classpath/usr/local/hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jarWordCount.java,但较新的2.X版本中,已经没有hadoop-core*.jar这个文件,因此编辑和打
- 大数据Hadoop集群运行程序
赵广陆
hadoophadoopbigdatamapreduce
目录1运行自带的MapReduce程序2常见错误1运行自带的MapReduce程序下面我们在Hadoop集群上运行一个MapReduce程序,以帮助读者对分布式计算有个基本印象。在安装Hadoop时,系统给用户提供了一些MapReduce示例程序,其中有一个典型的用于计算圆周率的Java程序包,现在运行该程序。该jar包文件的位置和文件名是“~/hadoop-3.1.0/share/Hadoop/
- 大数据面试系列之——Hadoop
潜心_守道
大数据面经面试大数据Hadoop
Hadoop的三个核心:HDFS(分布式存储系统)MapReduce(分布式计算系统)YARN(分布式资源调度)1.Hadoop集群的几种搭建模式1.单机模式:直接解压安装,不存在分布式存储系统2.伪分布式:NameNode和DataNode安装于同一个节点,无法体现分布式处理的优势。3.完全分布式:一个主节点,多个从节点,存在如果主节点宕机,集群就无法使用的缺点。4.高可用模式:多个主节点,多个
- hadoop
百里自来卷
hadoop大数据分布式
Hadoop是一个用于分布式存储和处理大规模数据的开源框架,它的架构主要由以下几个核心组件组成:1.Hadoop生态系统核心组件Hadoop的核心架构主要包括HDFS(HadoopDistributedFileSystem)和YARN(YetAnotherResourceNegotiator),以及MapReduce计算框架:1.1HDFS(分布式文件系统)HDFS负责存储大规模数据,采用主从架构
- 第一个Hadoop程序
lqlj2233
hadoop大数据分布式
编写和运行第一个Hadoop程序是学习Hadoop的重要步骤。以下是一个经典的“WordCount”程序示例,它统计文本文件中每个单词出现的次数。我们将使用Java编写MapReduce程序,并在Hadoop集群上运行它。一、WordCount程序概述WordCount是Hadoop的“HelloWorld”程序。它的基本逻辑如下:Mapper:读取输入文件,将每一行文本拆分为单词,并输出每个单词
- 【自学笔记】Hadoop基础知识点总览-持续更新
Long_poem
笔记hadoop大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Hadoop基础知识点总览1.Hadoop简介2.Hadoop生态系统3.HDFS(HadoopDistributedFileSystem)HDFS基本命令4.MapReduceWordCount示例(Java)5.YARN(YetAnotherResourceNegotiator)6.其他组件简介总结Hadoop基础知识点总
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- Spark核心之06:知识点梳理
小技工丨
大数据技术学习SparkSQLspark大数据
spark知识点梳理spark_〇一1、spark是什么spark是针对于大规模数据处理的统一分析引擎,它是基于内存计算框架,计算速度非常之快,但是它仅仅只是涉及到计算,并没有涉及到数据的存储,后期需要使用spark对接外部的数据源,比如hdfs。2、spark四大特性1、速度快spark比mapreduce快的2个主要原因1、基于内存(1)mapreduce任务后期再计算的时候,每一个job的输
- Hadoop基础知识及部署模式
2301_82242502
hadoop大数据分布式
一、Hadoop是什么Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力,解决海量数据的存储及海量数据的分析计算问题。广义上的Hadoop是指Hadoop的整个技术生态圈;狭义上的Hadoop指的是其核心三大组件,包括HDFS、YARN及MapReduce.二、Hadoop的发展史Hadoop起源于Lucen
- 探讨Hadoop的基础架构及其核心特点
xx155802862xx
hadoop大数据分布式
Hadoop是一个开源软件框架,用于存储和处理大规模数据集。它是Apache软件基金会下的一个项目,灵感来源于Google的两篇论文:一篇关于Google文件系统(GFS),另一篇关于MapReduce。Hadoop设计用于从单台服务器扩展到数千台机器,每台机器提供局部计算和存储。而不仅仅是处理大数据,Hadoop的真正价值在于其对于数据的高容错性、可扩展性以及相对低成本的存储和处理能力。以下是探
- 大数据技术学习框架(更新中......)
小技工丨
大数据技术学习大数据学习
Hadoop相关HDFS分布式文件系统MR(MapReduce)离线数据处理MR-图解YARN集群资源管理ZooKeeperZooKeeper分布式协调框架Hive相关Hive-01之数仓、架构、数据类型、DDL、内外部表Hive-02之分桶表、数据导入导出、静动态分区、查询、排序、hiveserver2Hive-03之传参、常用函数、explode、lateralview、行专列、列转行、UDF
- 入门Apache Spark:基础知识和架构解析
juer_0001
javaspark
介绍ApacheSparkSpark的历史和背景ApacheSpark是一种快速、通用、可扩展的大数据处理引擎,最初由加州大学伯克利分校的AMPLab开发,于2010年首次推出。它最初设计用于支持分布式计算框架MapReduce的交互式查询,但逐渐发展成为一种更通用的数据处理引擎,能够处理数据流、批处理和机器学习等工作负载。Spark的特点和优势Spark是一种快速、通用、可扩展的大数据处理框架,
- jdbc连接数据库步骤oracle,jdbc连接oracle数据库的步骤
weixin_39726044
使用E-MapReduce集群sqoop组件同步云外Oracle数据库数据到集群hiveE-MapReduce集群sqoop组件可以同步数据库的数据到集群里,不同的数据库源网络配置有一些差异网络配置。最常用的场景是从rdsmysql同步数据,最近也有用户询问如何同步云外专有Oracle数据库数据到hive。云外专有数据库需要集群所有节点通过公网访问,要创建VPC网络,使用VPC网络...文章鸿初2
- spark为什么比mapreduce快?
京东云开发者
sparkmapreduce大数据
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比ma
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多