static int __init i2c_adap_s3c_init(void)
{
return platform_driver_register(&s3c24xx_i2c_driver);
}
subsys_initcall(i2c_adap_s3c_init);
static void __exit i2c_adap_s3c_exit(void)
{
platform_driver_unregister(&s3c24xx_i2c_driver);
}
static struct platform_driver s3c24xx_i2c_driver = {
.probe = s3c24xx_i2c_probe,
.remove = s3c24xx_i2c_remove,
.id_table = s3c24xx_driver_ids,
.driver = {
.owner = THIS_MODULE,
.name = "s3c-i2c",
.pm = S3C24XX_DEV_PM_OPS,
},
};
这个就不多说了,学过以平台总线方式注册驱动的都知道这个platform_driver_register()和platform_driver_unregister()。
s3c24xx_i2c_driver 中重要看s3c24xx_i2c_probe,当总线上发生设备驱动name 的匹配是就会调用它。
static int s3c24xx_i2c_probe(struct platform_device *pdev)
{
//传入的参数是在总线中发生匹配的平台设备
//platform_device *pdev
struct s3c24xx_i2c *i2c;
struct s3c2410_platform_i2c *pdata;
struct resource *res;
int ret;
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "no platform data\n");
return -EINVAL;
}
i2c = kzalloc(sizeof(struct s3c24xx_i2c), GFP_KERNEL);//获取上面定义的结构体内存
if (!i2c) {
dev_err(&pdev->dev, "no memory for state\n");
return -ENOMEM;
}
//下面是给i2c中的一些成员赋值
strlcpy(i2c->adap.name, "s3c2410-i2c", sizeof(i2c->adap.name));
i2c->adap.owner = THIS_MODULE;
i2c->adap.algo = &s3c24xx_i2c_algorithm;//通信方式
i2c->adap.retries = 2;//通信重复次数
i2c->adap.class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
i2c->tx_setup = 50;
spin_lock_init(&i2c->lock);//初始化i2c->lock锁
init_waitqueue_head(&i2c->wait);//初始化i2c->wait等待队列头
i2c->dev = &pdev->dev;//把平台的设备赋给i2c->dev
i2c->clk = clk_get(&pdev->dev, "i2c");//获得i2c时钟
if (IS_ERR(i2c->clk)) {
dev_err(&pdev->dev, "cannot get clock\n");
ret = -ENOENT;
goto err_noclk;
}
dev_dbg(&pdev->dev, "clock source %p\n", i2c->clk);
clk_enable(i2c->clk);//使能时钟
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);//平台设备资源获取函数
if (res == NULL) {
dev_err(&pdev->dev, "cannot find IO resource\n");
ret = -ENOENT;
goto err_clk;
}
i2c->ioarea = request_mem_region(res->start, resource_size(res),//申请占有此资源
pdev->name);
if (i2c->ioarea == NULL) {
dev_err(&pdev->dev, "cannot request IO\n");
ret = -ENXIO;
goto err_clk;
}
i2c->regs = ioremap(res->start, resource_size(res));//映射这段内存资源,起始地址在i2c->regs.
if (i2c->regs == NULL) {
dev_err(&pdev->dev, "cannot map IO\n");
ret = -ENXIO;
goto err_ioarea;
}
dev_dbg(&pdev->dev, "registers %p (%p, %p)\n",
i2c->regs, i2c->ioarea, res);
i2c->adap.algo_data = i2c;把i2c中adap.algo_data指针指向i2c结构体。
i2c->adap.dev.parent = &pdev->dev;
ret = s3c24xx_i2c_init(i2c);//用于初始化i2c控制器
if (ret != 0)
goto err_iomap;
i2c->irq = ret = platform_get_irq(pdev, 0);//获取平台设备资源的中断
if (ret <= 0) {
dev_err(&pdev->dev, "cannot find IRQ\n");
goto err_iomap;
}
ret = request_irq(i2c->irq, s3c24xx_i2c_irq, IRQF_DISABLED,
dev_name(&pdev->dev), i2c);//申请中断
if (ret != 0) {
dev_err(&pdev->dev, "cannot claim IRQ %d\n", i2c->irq);
goto err_iomap;
}
ret = s3c24xx_i2c_register_cpufreq(i2c);
if (ret < 0) {
dev_err(&pdev->dev, "failed to register cpufreq notifier\n");
goto err_irq;
}
i2c->adap.nr = pdata->bus_num;//显示是第几个控制器,在/dev/i2c/ 中显示为0
ret = i2c_add_numbered_adapter(&i2c->adap);//注册这个控制器
if (ret < 0) {
dev_err(&pdev->dev, "failed to add bus to i2c core\n");
goto err_cpufreq;
}
platform_set_drvdata(pdev, i2c);
dev_info(&pdev->dev, "%s: S3C I2C adapter\n", dev_name(&i2c->adap.dev));
return 0;
err_cpufreq:
s3c24xx_i2c_deregister_cpufreq(i2c);
err_irq:
free_irq(i2c->irq, i2c);
err_iomap:
iounmap(i2c->regs);
err_ioarea:
release_resource(i2c->ioarea);
kfree(i2c->ioarea);
err_clk:
clk_disable(i2c->clk);
clk_put(i2c->clk);
err_noclk:
kfree(i2c);
return ret;
}
这个函数完成i2c控制器的IO资源,中断等等的相关配置。
相对来说比较关键的有
i2c->adap.algo = &s3c24xx_i2c_algorithm;
ret = request_irq(i2c->irq, s3c24xx_i2c_irq, IRQF_DISABLED,
dev_name(&pdev->dev), i2c);
第一个定义了i2c总线通信方式,第二个完成了中断函数。
下面看看s3c24xx_i2c_algorithm
static const struct i2c_algorithm s3c24xx_i2c_algorithm = {
.master_xfer = s3c24xx_i2c_xfer,
.functionality = s3c24xx_i2c_func,
};
struct i2c_algorithm {
int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num);
int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
unsigned short flags, char read_write,
u8 command, int size, union i2c_smbus_data *data);
u32 (*functionality) (struct i2c_adapter *);
};i2c_algorithm 中有三个指针函数,其中只定义了两个。*master_xfer和*functionality.
这两个函数的第一个定义了一次完整的传输,第二个定义了这条总线的功能。
static u32 s3c24xx_i2c_func(struct i2c_adapter *adap)
{
//函数传入的是此总线控制器结构,返回其功能
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
}
static int s3c24xx_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{ //函数传入控制器结构,传输的信息i2c_msg *msgs结构体指针,还有消息数量num
struct s3c24xx_i2c *i2c = (struct s3c24xx_i2c *)adap->algo_data;//获得结构体struct s3c24xx_i2c *i2c ,为什么能够通过它获得请看s3c24xx_i2c_probe()函数
int retry;
int ret;
struct s3c2410_platform_i2c *pdata = i2c->dev->platform_data;
通过上面的英文注释不难理解。
if (pdata->cfg_gpio)
pdata->cfg_gpio(to_platform_device(i2c->dev));
for (retry = 0; retry < adap->retries; retry++) {
ret = s3c24xx_i2c_doxfer(i2c, msgs, num);//真正的发送在这个函数里
if (ret != -EAGAIN)
return ret;
dev_dbg(i2c->dev, "Retrying transmission (%d)\n", retry);
udelay(100);
}
return -EREMOTEIO;
}
下面就打到函数s3c24xx_i2c_doxfer(i2c, msgs, num)
static int s3c24xx_i2c_doxfer(struct s3c24xx_i2c *i2c,
struct i2c_msg *msgs, int num)
{ //这个函数传入了struct s3c24xx_i2c *i2c,发送消息结构体,还有数量
unsigned long timeout;
int ret;
if (i2c->suspended)
return -EIO;
ret = s3c24xx_i2c_set_master(i2c);//下面就是这个函数的具体。主要是获得这个总线是否忙
static int s3c24xx_i2c_set_master(struct s3c24xx_i2c *i2c)
{
unsigned long iicstat;
int timeout = 400;
while (timeout-- > 0) {
iicstat = readl(i2c->regs + S3C2410_IICSTAT);
if (!(iicstat & S3C2410_IICSTAT_BUSBUSY))
return 0;
msleep(1);
}
return -ETIMEDOUT;
}
**************************************************************************************/
if (ret != 0) {//如果忙的话就出错,不能获得I2C传输总线
dev_err(i2c->dev, "cannot get bus (error %d)\n", ret);
ret = -EAGAIN;
goto out;
}
spin_lock_irq(&i2c->lock);//获取锁,不能被打断
i2c->msg = msgs;
i2c->msg_num = num;
i2c->msg_ptr = 0;
i2c->msg_idx = 0;
i2c->state = STATE_START;
s3c24xx_i2c_enable_irq(i2c);//打开中断
s3c24xx_i2c_message_start(i2c, msgs);//起始信号发送如下
s3c24xx_i2c_enable_ack(i2c);
iiccon = readl(i2c->regs + S3C2410_IICCON);
writel(stat, i2c->regs + S3C2410_IICSTAT);
dev_dbg(i2c->dev, "START: lx to IICSTAT, x to DS\n", stat, addr);
writeb(addr, i2c->regs + S3C2410_IICDS);
ndelay(i2c->tx_setup);
dev_dbg(i2c->dev, "iiccon, lx\n", iiccon);
writel(iiccon, i2c->regs + S3C2410_IICCON);
stat |= S3C2410_IICSTAT_START;
writel(stat, i2c->regs + S3C2410_IICSTAT);
}
***********************************************************************************************/
spin_unlock_irq(&i2c->lock);
timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5);//事件过时函数
ret = i2c->msg_idx;
if (timeout == 0)
dev_dbg(i2c->dev, "timeout\n");
else if (ret != num)
dev_dbg(i2c->dev, "incomplete xfer (%d)\n", ret);
msleep(1);
out:
return ret;
}
//很多人也许还会有疑惑,哪里传输了,怎么好像只发送了一个起始信号,就什么都没干了。具体的传输哪里去了??????
想想中断,在完成s3c24xx_i2c_message_start(i2c, msgs)后会发生中断,在中断中判断具体下一步传输。
static irqreturn_t s3c24xx_i2c_irq(int irqno, void *dev_id)
{ //irqno中断号, *dev_id 传递给中断的参数,在中断注册中确定
struct s3c24xx_i2c *i2c = dev_id;
unsigned long status;
unsigned long tmp;
status = readl(i2c->regs + S3C2410_IICSTAT);
if (status & S3C2410_IICSTAT_ARBITR) {
dev_err(i2c->dev, "deal with arbitration loss\n");
}//发生错误
if (i2c->state == STATE_IDLE) {
dev_dbg(i2c->dev, "IRQ: error i2c->state == IDLE\n");
tmp = readl(i2c->regs + S3C2410_IICCON);
tmp &= ~S3C2410_IICCON_IRQPEND;
writel(tmp, i2c->regs + S3C2410_IICCON);
goto out;
}
i2s_s3c_irq_nextbyte(i2c, status);
out:
return IRQ_HANDLED;
}
i2s_s3c_irq_nextbyte()函数很长,也有点复杂。慢慢来吧
static int i2s_s3c_irq_nextbyte(struct s3c24xx_i2c *i2c, unsigned long iicstat)
{
unsigned long tmp;
unsigned char byte;
int ret = 0;
switch (i2c->state) {
case STATE_IDLE:
dev_err(i2c->dev, "%s: called in STATE_IDLE\n", __func__);
goto out;
break;
case STATE_STOP://发送结束信号
dev_err(i2c->dev, "%s: called in STATE_STOP\n", __func__);
s3c24xx_i2c_disable_irq(i2c);
goto out_ack;
case STATE_START:
if (iicstat & S3C2410_IICSTAT_LASTBIT &&
!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {
dev_dbg(i2c->dev, "ack was not received\n");
s3c24xx_i2c_stop(i2c, -ENXIO);
goto out_ack;
}//判断是STATE_START状态时,进一步判断有没收到ACK如果没有结束,否者进去下一步判断
if (i2c->msg->flags & I2C_M_RD)//是读?
i2c->state = STATE_READ;
else//否则是写
i2c->state = STATE_WRITE;
if (is_lastmsg(i2c) && i2c->msg->len == 0) {//如果没有要传输的,结束
s3c24xx_i2c_stop(i2c, 0);
goto out_ack;
}
if (i2c->state == STATE_READ)
goto prepare_read;//如果是读则转到prepare_read
case STATE_WRITE:
if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {
if (iicstat & S3C2410_IICSTAT_LASTBIT) {
dev_dbg(i2c->dev, "WRITE: No Ack\n");
s3c24xx_i2c_stop(i2c, -ECONNREFUSED);
goto out_ack;
}
}
retry_write:
if (!is_msgend(i2c)) {
byte = i2c->msg->buf[i2c->msg_ptr++];
writeb(byte, i2c->regs + S3C2410_IICDS);发送数据byte
ndelay(i2c->tx_setup);
} else if (!is_lastmsg(i2c)) {
dev_dbg(i2c->dev, "WRITE: Next Message\n");
i2c->msg_ptr = 0;
i2c->msg_idx++;
i2c->msg++;
if (i2c->msg->flags & I2C_M_NOSTART) {
if (i2c->msg->flags & I2C_M_RD) {
s3c24xx_i2c_stop(i2c, -EINVAL);
}
goto retry_write;
} else {
s3c24xx_i2c_message_start(i2c, i2c->msg);
i2c->state = STATE_START;
}
} else {
s3c24xx_i2c_stop(i2c, 0);
}
break;
case STATE_READ://判断为读
byte = readb(i2c->regs + S3C2410_IICDS);读取数据到BYTE,
i2c->msg->buf[i2c->msg_ptr++] = byte;吧byte赋给i2c->msg->buf;
prepare_read:
if (is_msglast(i2c)) {
if (is_lastmsg(i2c))
s3c24xx_i2c_disable_ack(i2c);
} else if (is_msgend(i2c)) {
if (is_lastmsg(i2c)) {
dev_dbg(i2c->dev, "READ: Send Stop\n");
s3c24xx_i2c_stop(i2c, 0);
} else {
dev_dbg(i2c->dev, "READ: Next Transfer\n");
i2c->msg_ptr = 0;
i2c->msg_idx++;
i2c->msg++;
}
}
break;
}
out_ack:
tmp = readl(i2c->regs + S3C2410_IICCON);
tmp &= ~S3C2410_IICCON_IRQPEND;
writel(tmp, i2c->regs + S3C2410_IICCON);
out:
return ret;
}