由于卡米歇尔数的存在,导致 费马小定理 无法判断一个数是否是素数。
费马小定理: 设p是素数, a是任意整数且 a!三0( mod p ), 则
a^(p-1) 三 1(mod p)
//========================================================
卡米歇尔数:它是合数, 当 1<=a<=n, 都有 a^n 三 a(mod n)
//========================================================
卡米歇尔数的考塞特判别法: 设n是合数,则n是卡米歇尔数当且仅当它是奇数,且整除n的每个素数p满足下述两个条件:
1)p^2 不整除 n
2)p-1 整除 n-1
//========================================================
如果要判断相当大的素数最好使用 合数的拉宾-米勒测试定理
合数的拉宾-米勒测试定理: 设n是奇素数, 记 n-1 = 2^k * q , q 是奇数, 对不被n整除的某个a, 如果下述两个条件都成立,则n是合数.
a) a^q !三 1(mod n);
b) 对所有 i = 0, 1, 2, ...., k-1, a^((2^i)*q) !三 -1(mod n);
//========================================================
这里给出了合数的拉宾-米勒测试定理 a 的取值:
// montgomery快速幂模算法 (n ^ p) % m, 与power算法极类似 unsigned __int64 montgomery(unsigned __int64 n, unsigned __int64 p, unsigned __int64 m) { unsigned __int64 r = n % m; unsigned __int64 tmp = 1; while (p > 1) { if ((p & 1)!=0) { tmp = (tmp * r) % m; } r = (r * r) % m; p >>= 1; } return (r * tmp) % m; } //返回true:n是合数, 返回false:n是素数 bool R_M_Help(unsigned __int64 a, unsigned __int64 k, unsigned __int64 q, unsigned __int64 n) { if ( 1 != montgomery( a, q, n ) ) { int e = 1; for ( int i = 0; i < k; ++i ) { if ( n - 1 == montgomery( a, q * e, n ) ) return false; e <<= 1; } return true; } return false; } //拉宾-米勒测试 返回true:n是合数, 返回false:n是素数 bool R_M( unsigned __int64 n ) { if( n < 2 ) throw 0; if ( n == 2 || n == 3 ) { return false; } if( (n & 1) == 0 ) return true; // 找到k和q, n = 2^k * q + 1; unsigned __int64 k = 0, q = n - 1; while( 0 == ( q & 1 ) ) { q >>= 1; k++; } /*if n < 1,373,653, it is enough to test a = 2 and 3. if n < 9,080,191, it is enough to test a = 31 and 73. if n < 4,759,123,141, it is enough to test a = 2, 7, and 61. if n < 2,152,302,898,747, it is enough to test a = 2, 3, 5, 7, and 11.*/ if( n < 1373653 ) { if( R_M_Help(2, k, q, n ) || R_M_Help(3, k, q, n ) ) return true; } else if( n < 9080191 ) { if( R_M_Help(31, k, q, n ) || R_M_Help(73, k, q, n ) ) return true; } else if( n < 4759123141 ) { if( R_M_Help(2, k, q, n ) || R_M_Help(3, k, q, n ) || R_M_Help(5, k, q, n ) || R_M_Help(11, k, q, n ) ) return true; } else if( n < 2152302898747 ) { if( R_M_Help(2, k, q, n ) || R_M_Help(3, k, q, n ) || R_M_Help(5, k, q, n ) || R_M_Help(7, k, q, n ) || R_M_Help(11, k, q, n ) ) return true; } else { if( R_M_Help(2, k, q, n ) || R_M_Help(3, k, q, n ) || R_M_Help(5, k, q, n ) || R_M_Help(7, k, q, n ) || R_M_Help(11, k, q, n ) || R_M_Help(31, k, q, n ) || R_M_Help(61, k, q, n ) || R_M_Help(73, k, q, n ) ) return true; } return false; }
#include<stdio.h> #include<string.h> #include<math.h> #include<time.h> #include<stdlib.h> long long prime[]={2,3,5,7,11,13,17,19,23,29}; #define TIME 10 //Miller测试次数 long long gcd(long long a,long long b){return b==0?a:gcd(b,a%b);} long long mod_mult(long long a, long long b, long long n) //计算(a*b) mod n { long long s=0; a=a%n; while(b){ if (b&1){ s += a;if(s>=n) s-= n; } a=a<<1;if(a>=n)a-=n; b=b>>1; } return s; } long long mod_exp(long long a, long long b, long long n) //计算(a^b) mod n { long long d=1; a=a%n; while(b>=1) { if(b&1)d=mod_mult(d,a,n); a=mod_mult(a,a,n); b=b>>1; } return d; } bool Wintess(long long a, long long n) //以a为基对n进行Miller测试并实现二次探测 { long long m, x, y; int i, j = 0; m = n-1; while (!(m&1)) //计算(n-1)=m*(2^j)中的j和m,j=0时m=n-1,不断的除以2直至m为奇数 { m=m>>1; j++; } x = mod_exp(a, m, n); for (i = 1; i <= j; i++) { y = mod_mult(x, x, n); if ((y == 1) && (x != 1) && (x != n - 1)) //二次探测 return true; //返回true时,n是合数 x = y; } if (y!=1) return true; return false; } bool miller_rabin(int times, long long n) //对n进行times次的Miller测试 { long long a; int i; if (n == 2) return true; if (n<2||(n&1)==0) return false; for (i = 1; i <= times; i++) { a =rand() % (n - 2) + 2; if (Wintess(a, n)) return false; } return true; }