Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 30204 | Accepted: 14244 | |
Case Time Limit: 2000MS |
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Output
Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <queue> #include <algorithm> #include <map> #include <cmath> #include <iomanip> #define INF 99999999 typedef long long LL; using namespace std; const int MAX=50000+10; int s[MAX],rmqmax[MAX][32],rmqmin[MAX][32]; void InitRMQ(int n){//n是数组长度 for(int i=0;i<n;++i)rmqmax[i][0]=rmqmin[i][0]=s[i]; int l=log(n*1.0)/log(2.0);//2*l<=n for(int j=1;j<=l;++j){ for(int i=0;i<n+1-(1<<j);++i){//i+2^j-1<n rmqmax[i][j]=max(rmqmax[i][j-1],rmqmax[i+(1<<(j-1))][j-1]);//i~i+2^(j-1)-1,i+2^(j-1)~i+2^j-1 rmqmin[i][j]=min(rmqmin[i][j-1],rmqmin[i+(1<<(j-1))][j-1]);//i~i+2^(j-1)-1,i+2^(j-1)~i+2^j-1 } } } int lcpmax(int a,int b){ int j=log(b-a+1.0)/log(2.0);//2^j<=b-a+1 return max(rmqmax[a][j],rmqmax[b+1-(1<<j)][j]); } int lcpmin(int a,int b){ int j=log(b-a+1.0)/log(2.0); return min(rmqmin[a][j],rmqmin[b+1-(1<<j)][j]); } int main(){ //freopen("stdin.txt","r",stdin); //freopen("stdout.txt","w",stdout); int n,m,a,b; while(cin>>n>>m){ for(int i=0;i<n;++i)scanf("%d",&s[i]);//cin>>s[i]; InitRMQ(n); for(int i=0;i<m;++i){ scanf("%d%d",&a,&b);//cin>>a>>b; printf("%d\n",lcpmax(a-1,b-1)-lcpmin(a-1,b-1));//cout<<lcpmax(a-1,b-1)-lcpmin(a-1,b-1)<<endl; } } return 0; }