ex1
load timeseriesAnalysis; y_detrended1 = detrend(ydata1); y_detrended2 = detrend(ydata2); subplot(2,1,1);plot(x, ydata1,'-',x, ydata1-y_detrended1,'r');title('Detrended Signal 1');
detrend 用法详见help.
ex2 如何使用scatter:
[attrib className] = xlsread('iris.xlsx'); %% basic scatter plot figure('units','normalized','Position',[0.2359 0.3009 0.4094 0.6037]); scatter(attrib(:,1),attrib(:,2),10*attrib(:,3),[1 0 0],'filled','Marker','^'); set(gca,'Fontsize',12); title({'The Fisher Iris dataset (shown here) has 150 samples, with 4 attribute dimensions',... 'A scaled version of attribute 3 is used to determine the size of the marker',... 'Customizations include user-defined marker style and face color'}); xlabel('Attribute 1'); ylabel('Attribute 2'); box on; set(gcf,'color',[1 1 1],'paperpositionmode','auto');
ex3:
%% plot matrix % The output parameters have % A matrix of handles to the objects created in H, % A matrix of handles to the individual subaxes in AX, % A handle to a big (invisible) axes that frames the subaxes in BigAx, % A matrix of handles for the histogram plots in P. BigAx is left as the current axes so that a subsequent title, xlabel, or ylabel command is centered with respect to the matrix of axes. figure('units','normalized','Position',[ 0.2359 0.3009 0.4094 0.6037]); [H,AX,BigAx,P] = plotmatrix(attrib,'r.'); attribName = {[char(10) 'Sepal length'],[char(10) 'Sepal width'],[char(10) 'Petal length'],[char(10) 'Petal width']}; % add annotations for i = 1:4 set(get(AX(i,1),'ylabel'),'string',['Attribute ' num2str(i) attribName{i}]); set(get(AX(4,i),'xlabel'),'string',['Attribute ' num2str(i) attribName{i}]); end set(get(BigAx,'title'),'String',{'Scatter Plot Matrix (Fisher dataset with 3 known classes of iris flowers)', ... 'Figure shows the 3 classes are not separable based on any two dimensions'},'Fontsize',14); set(gcf,'color',[1 1 1],'paperpositionmode','auto');
今天总结的很简单,就几个函数的用法。