2013 多校第七场 hdu 4667 Building Fence

题意:

给一些互不相交的圆和三角形

求一个最短的围栏长度将他们包围在内

解法1:

将圆细分成2000个点加入点集(10W个),做凸包(nlogn),比赛的时候shuangde想到了,但是细分成500个点就超时了  精度不够

结束后看到 沉溺大神的博客  他也是使用此方法。。。。。然后G++900+ms能过   给跪

后来改了下模板代码  全加了引用和 inline关键字    几何模板的函数嵌套太多了。。。  加了inline之后从TLE变成700+ms AC   呵了个呵

只能说还是too young

解法2:

将圆和圆 圆和每一点的切点也加入点集,并且标记切点所在的圆

求凸包  最后一个for 如果两点在同一圆上  则求弧长  反之求两点间距离

这方法比较科学   不过不能使用求直线和圆交点的函数  否则超时

 

 

解法1代码:

//大白p263
#include <cmath>
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
#include <functional>
#include <set>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const double eps=1e-8;//精度
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
inline int dcmp(const double& x){//判断double等于0或。。。
    if(fabs(x)<eps)return 0;else return x<0?-1:1;
}
struct Point{
    double x,y;
    Point(){}
    Point(double x,double y):x(x),y(y){}
};
typedef Point Vector;
typedef vector<Point> Polygon;
inline Vector operator+(const Vector& a,const Vector& b){return Vector(a.x+b.x,a.y+b.y);}//向量+向量=向量
inline Vector operator-(const Point& a,const Point& b){return Vector(a.x-b.x,a.y-b.y);}//点-点=向量
inline Vector operator*(const Vector& a,const double& p){return Vector(a.x*p,a.y*p);}//向量*实数=向量
inline Vector operator/(const Vector& a,const double& p){return Vector(a.x/p,a.y/p);}//向量/实数=向量
inline bool operator<( const Point& A,const Point& B ){return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
inline bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}
inline bool operator!=(const Point&a,const Point&b){return a==b?false:true;}
struct Segment{
    Point a,b;
    Segment(){}
    Segment(Point _a,Point _b){a=_a,b=_b;}
    inline bool friend operator<(const Segment& p,const Segment& q){return p.a<q.a||(p.a==q.a&&p.b<q.b);}
    inline bool friend operator==(const Segment& p,const Segment& q){return (p.a==q.a&&p.b==q.b)||(p.a==q.b&&p.b==q.a);}
};
struct Circle{
    Point c;
    double r;
    Circle(){}
    Circle(Point _c, double _r):c(_c),r(_r) {}
    Point point(double a)const{return Point(c.x+cos(a)*r,c.y+sin(a)*r);}
    bool friend operator<(const Circle& a,const Circle& b){return a.r<b.r;}
};
struct Line{
    Point p;
    Vector v;
    double ang;
    Line() {}
    Line(const Point &_p, const Vector &_v):p(_p),v(_v){ang = atan2(v.y, v.x);}
    inline bool operator<(const Line &L)const{return  ang < L.ang;}
};
inline double Dot(const Vector& a,const Vector& b){return a.x*b.x+a.y*b.y;}//|a|*|b|*cosθ 点积
inline double Length(const Vector& a){return sqrt(Dot(a,a));}//|a| 向量长度
inline double Angle(const Vector& a,const Vector& b){return acos(Dot(a,b)/Length(a)/Length(b));}//向量夹角θ
inline double Cross(const Vector& a,const Vector& b){return a.x*b.y-a.y*b.x;}//叉积 向量围成的平行四边形的面积
inline double Area2(const Point& a,const Point& b,Point c){return Cross(b-a,c-a);}//同上 参数为三个点
inline double DegreeToRadius(const double& deg){return deg/180*PI;}
inline double GetRerotateAngle(const Vector& a,const Vector& b){//向量a顺时针旋转theta度得到向量b的方向
    double tempa=Angle(a,Vector(1,0));
    if(a.y<0) tempa=2*PI-tempa;
    double tempb=Angle(b,Vector(1,0));
    if(b.y<0) tempb=2*PI-tempb;
    if((tempa-tempb)>0) return tempa-tempb;
    else return tempa-tempb+2*PI;
}
inline double torad(const double& deg){return deg/180*PI;}//角度化为弧度
inline Vector Rotate(const Vector& a,const double& rad){//向量逆时针旋转rad弧度
    return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
inline Vector Normal(const Vector& a){//计算单位法线
    double L=Length(a);
    return Vector(-a.y/L,a.x/L);
}
inline Point GetLineProjection(const Point& p,const Point& a,const Point& b){//点在直线上的投影
    Vector v=b-a;
    return a+v*(Dot(v,p-a)/Dot(v,v));
}
inline Point GetLineIntersection(Point p,Vector v,Point q,Vector w){//求直线交点 有唯一交点时可用
    Vector u=p-q;
    double t=Cross(w,u)/Cross(v,w);
    return p+v*t;
}
int ConvexHull(Point* p,int n,Point* sol){//计算凸包
    sort(p,p+n);
    int m=0;
    for(int i=0;i<n;i++){
        while(m>1&&dcmp(Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2]))<=0) m--;
        sol[m++]=p[i];
    }
    int k=m;
    for(int i=n-2;i>=0;i--){
        while(m>k&&dcmp(Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2]))<=0) m--;
        sol[m++]=p[i];
    }
    if(n>0) m--;
    return m;
}
double Heron(double a,double b,double c){//海伦公式
    double p=(a+b+c)/2;
    return sqrt(p*(p-a)*(p-b)*(p-c));
}
bool SegmentProperIntersection(const Point& a1,const Point& a2,const Point& b1,const Point& b2){//线段规范相交判定
    double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
    double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
double CutConvex(const int& n,Point* poly,const Point& a,const Point& b, vector<Point> result[3]){//有向直线a b 切割凸多边形
    vector<Point> points;
    Point p;
    Point p1=a,p2=b;
    int cur,pre; 
    result[0].clear(); 
    result[1].clear(); 
    result[2].clear();
    if(n==0) return 0;
    double tempcross;
    tempcross=Cross(p2-p1,poly[0]-p1);
    if(dcmp(tempcross)==0) pre=cur=2;
    else if(tempcross>0) pre=cur=0;
    else pre=cur=1;
    for(int i=0;i<n;i++){
        tempcross=Cross(p2-p1,poly[(i+1)%n]-p1);
        if(dcmp(tempcross)==0) cur=2;
        else if(tempcross>0) cur=0;
        else cur=1;
        if(cur==pre){
            result[cur].push_back(poly[(i+1)%n]); 
        }
        else{
            p1=poly[i]; 
            p2=poly[(i+1)%n];
            p=GetLineIntersection(p1,p2-p1,a,b-a);
            points.push_back(p); 
            result[pre].push_back(p); 
            result[cur].push_back(p); 
            result[cur].push_back(poly[(i+1)%n]); 
            pre=cur;
        }
    }
    sort(points.begin(),points.end());
    if(points.size()<2){
        return 0; 
    }
    else{
        return Length(points.front()-points.back());
    }
}
double DistanceToSegment(Point p,Segment s){//点到线段的距离
    if(s.a==s.b) return Length(p-s.a);
    Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b;
    if(dcmp(Dot(v1,v2))<0) return Length(v2);
    else if(dcmp(Dot(v1,v3))>0) return Length(v3);
    else return fabs(Cross(v1,v2))/Length(v1);
}
inline bool isPointOnSegment(const Point& p,const Segment& s){
    return dcmp(Cross(s.a-p,s.b-p))==0&&dcmp(Dot(s.a-p,s.b-p))<0;
}
int isPointInPolygon(Point p, Point* poly,int n){//点与多边形的位置关系
    int wn=0;
    for(int i=0;i<n;i++){
        Point& p2=poly[(i+1)%n];
        if(isPointOnSegment(p,Segment(poly[i],p2))) return -1;//点在边界上
        int k=dcmp(Cross(p2-poly[i],p-poly[i]));
        int d1=dcmp(poly[i].y-p.y);
        int d2=dcmp(p2.y-p.y);
        if(k>0&&d1<=0&&d2>0)wn++;
        if(k<0&&d2<=0&&d1>0)wn--;
    }
    if(wn) return 1;//点在内部
    else return 0;//点在外部
}
double PolygonArea(Point* p,int n){//多边形有向面积
    double area=0;
    for(int i=1;i<n-1;i++)
        area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2;
}
int GetLineCircleIntersection(Line L,Circle C,Point& p1,Point& p2){//圆与直线交点 返回交点个数
    double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y-C.c.y;
    double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -C.r*C.r;
    double delta = f*f - 4*e*g;
    if(dcmp(delta) < 0)  return 0;//相离
    if(dcmp(delta) == 0) {//相切
        p1=p1=L.p+L.v*(-f/(2*e));
        return 1;
    }//相交
    p1=(L.p+L.v*(-f-sqrt(delta))/(2*e));
    p2=(L.p+L.v*(-f+sqrt(delta))/(2*e));
    return 2;
}
double rotating_calipers(Point *ch,int n)//旋转卡壳
{
    int q=1;
    double ans=0;
    ch[n]=ch[0];
    for(int p=0;p<n;p++)
    {
        while(Cross(ch[q+1]-ch[p+1],ch[p]-ch[p+1])>Cross(ch[q]-ch[p+1],ch[p]-ch[p+1]))
            q=(q+1)%n;
        ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
    }
    return ans;
}
Polygon CutPolygon(Polygon poly,const Point& a,const Point& b){//用a->b切割多边形 返回左侧
    Polygon newpoly;
    int n=poly.size();
    for(int i=0;i<n;i++){
        Point c=poly[i];
        Point d=poly[(i+1)%n];
        if(dcmp(Cross(b-a,c-a))>=0) newpoly.push_back(c);
        if(dcmp(Cross(b-a,c-d))!=0){
            Point ip=GetLineIntersection(a,b-a,c,d-c);
            if(isPointOnSegment(ip,Segment(c,d))) newpoly.push_back(ip);
        }
    }
    return newpoly;
}
int GetCircleCircleIntersection(Circle c1,Circle c2,Point& p1,Point& p2){//求两圆相交
    double d=Length(c1.c-c2.c);
    if(dcmp(d)==0){
        if(dcmp(c1.r-c2.r)==0) return -1;//两圆重合
        return 0;
    }
    if(dcmp(c1.r+c2.r-d)<0) return 0;
    if(dcmp(fabs(c1.r-c2.r)-d)>0) return 0;
    double a=Angle(c2.c-c1.c,Vector(1,0));
    double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
    p1=c1.point(a-da);p2=c1.point(a+da);
    if(p1==p2) return 1;
    return 2;
}
inline bool isPointOnleft(Point p,Line L){return dcmp(Cross(L.v,p-L.p))>0;}//点在直线左边 线上不算
int HalfplaneIntersection(Line *L,int n,Point* poly){//半平面交
    sort(L,L+n);
    int first,last;
    Point* p=new Point[n];
    Line* q=new Line[n];
    q[first=last=0]=L[0];
    for(int i=1;i<n;i++){
        while(first<last&&!isPointOnleft(p[last-1],L[i])) last--;
        while(first<last&&!isPointOnleft(p[first],L[i])) first++;
        q[++last]=L[i];
        if(dcmp(Cross(q[last].v,q[last-1].v))==0){
            last--;
            if(isPointOnleft(L[i].p,q[last])) q[last]=L[i];
        }
        if(first<last) p[last-1]=GetLineIntersection(q[last-1].p,q[last-1].v,q[last].p,q[last].v);
    }
    while(first<last&&!isPointOnleft(p[last-1],q[first])) last--;
    if(last-first<=1) return 0;
    p[last]=GetLineIntersection(q[last].p,q[last].v,q[first].p,q[first].v);
    int m=0;
    for(int i=first;i<=last;i++) poly[m++]=p[i];
    return m;
}
//两点式化为一般式A = b.y-a.y, B = a.x-b.x, C = -a.y*(B)-a.x*(A);
//--------------------------------------
//--------------------------------------
//--------------------------------------
//--------------------------------------
//--------------------------------------
Point point[444444],ppoint[444444];
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        int tot = 0;
        double x,y,r;
        for(int i = 0;i<n;i++)
        {
            scanf("%lf%lf%lf",&x,&y,&r);
            for(double j = 0;j<2*PI;j += 0.0032)
            {
                point[tot++] = Point(x+r*cos(j),y+r*sin(j));
            }
        }
        for(int i = 0;i<m;i++)
            for(int j = 0;j<3;j++)
            {
                scanf("%lf%lf",&x,&y);
                point[tot++] = Point(x,y);
            }
        tot=ConvexHull(point,tot,ppoint);
        double ans = 0;
        Point pre = ppoint[0];
        for(int i = 1;i<tot;i++)
        {
            ans += Length(ppoint[i]-pre);
            pre = ppoint[i];
        }
        ans += Length(ppoint[0]-pre);
        printf("%.5f\n",ans);
    }
    return 0;
}


解法2:

//大白p263
#include <cmath>
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
#include <functional>
#include <set>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const double eps=1e-8;//精度
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
inline int dcmp(const double& x){//判断double等于0或。。。
	if(fabs(x)<eps)return 0;else return x<0?-1:1;
}
struct Point{
	int i;
	double R;
	double x,y;
	Point(){}
	Point(double x,double y):x(x),y(y){}
};
typedef Point Vector;
typedef vector<Point> Polygon;
inline Vector operator+(const Vector& a,const Vector& b){return Vector(a.x+b.x,a.y+b.y);}//向量+向量=向量
inline Vector operator-(const Point& a,const Point& b){return Vector(a.x-b.x,a.y-b.y);}//点-点=向量
inline Vector operator*(const Vector& a,const double& p){return Vector(a.x*p,a.y*p);}//向量*实数=向量
inline Vector operator/(const Vector& a,const double& p){return Vector(a.x/p,a.y/p);}//向量/实数=向量
inline bool operator<( const Point& A,const Point& B ){return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
inline bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}
inline bool operator!=(const Point&a,const Point&b){return a==b?false:true;}
struct Segment{
	Point a,b;
	Segment(){}
	Segment(Point _a,Point _b){a=_a,b=_b;}
	inline bool friend operator<(const Segment& p,const Segment& q){return p.a<q.a||(p.a==q.a&&p.b<q.b);}
	inline bool friend operator==(const Segment& p,const Segment& q){return (p.a==q.a&&p.b==q.b)||(p.a==q.b&&p.b==q.a);}
};
struct Circle{
	Point c;
	double r;
	Circle(){}
	Circle(Point _c, double _r):c(_c),r(_r) {}
	Point point(double a)const{return Point(c.x+cos(a)*r,c.y+sin(a)*r);}
	bool friend operator<(const Circle& a,const Circle& b){return a.r<b.r;}
};
struct Line{
	Point p;
	Vector v;
	double ang;
	Line() {}
	Line(const Point &_p, const Vector &_v):p(_p),v(_v){ang = atan2(v.y, v.x);}
	inline bool operator<(const Line &L)const{return  ang < L.ang;}
};
inline double Dot(const Vector& a,const Vector& b){return a.x*b.x+a.y*b.y;}//|a|*|b|*cosθ 点积
inline double Length(const Vector& a){return sqrt(Dot(a,a));}//|a| 向量长度
inline double Angle(const Vector& a,const Vector& b){return acos(Dot(a,b)/Length(a)/Length(b));}//向量夹角θ
inline double Cross(const Vector& a,const Vector& b){return a.x*b.y-a.y*b.x;}//叉积 向量围成的平行四边形的面积
inline double Area2(const Point& a,const Point& b,Point c){return Cross(b-a,c-a);}//同上 参数为三个点
inline double DegreeToRadius(const double& deg){return deg/180*PI;}
inline double GetRerotateAngle(const Vector& a,const Vector& b){//向量a顺时针旋转theta度得到向量b的方向
	double tempa=Angle(a,Vector(1,0));
	if(a.y<0) tempa=2*PI-tempa;
	double tempb=Angle(b,Vector(1,0));
	if(b.y<0) tempb=2*PI-tempb;
	if((tempa-tempb)>0) return tempa-tempb;
	else return tempa-tempb+2*PI;
}
inline double torad(const double& deg){return deg/180*PI;}//角度化为弧度
inline Vector Rotate(const Vector& a,const double& rad){//向量逆时针旋转rad弧度
	return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
inline Vector Normal(const Vector& a){//计算单位法线
	double L=Length(a);
	return Vector(-a.y/L,a.x/L);
}
inline Point GetLineProjection(const Point& p,const Point& a,const Point& b){//点在直线上的投影
	Vector v=b-a;
	return a+v*(Dot(v,p-a)/Dot(v,v));
}
inline Point GetLineIntersection(Point p,Vector v,Point q,Vector w){//求直线交点 有唯一交点时可用
	Vector u=p-q;
	double t=Cross(w,u)/Cross(v,w);
	return p+v*t;
}
int ConvexHull(Point* p,int n,Point* sol){//计算凸包
	sort(p,p+n);
	int m=0;
	for(int i=0;i<n;i++){
		while(m>1&&dcmp(Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2]))<=0) m--;
		sol[m++]=p[i];
	}
	int k=m;
	for(int i=n-2;i>=0;i--){
		while(m>k&&dcmp(Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2]))<=0) m--;
		sol[m++]=p[i];
	}
	if(n>0) m--;
	return m;
}
double Heron(double a,double b,double c){//海伦公式
	double p=(a+b+c)/2;
	return sqrt(p*(p-a)*(p-b)*(p-c));
}
bool SegmentProperIntersection(const Point& a1,const Point& a2,const Point& b1,const Point& b2){//线段规范相交判定
	double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
	double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
	return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
double CutConvex(const int& n,Point* poly,const Point& a,const Point& b, vector<Point> result[3]){//有向直线a b 切割凸多边形
	vector<Point> points;
	Point p;
	Point p1=a,p2=b;
	int cur,pre; 
	result[0].clear(); 
	result[1].clear(); 
	result[2].clear();
	if(n==0) return 0;
	double tempcross;
	tempcross=Cross(p2-p1,poly[0]-p1);
	if(dcmp(tempcross)==0) pre=cur=2;
	else if(tempcross>0) pre=cur=0;
	else pre=cur=1;
	for(int i=0;i<n;i++){
		tempcross=Cross(p2-p1,poly[(i+1)%n]-p1);
		if(dcmp(tempcross)==0) cur=2;
		else if(tempcross>0) cur=0;
		else cur=1;
		if(cur==pre){
			result[cur].push_back(poly[(i+1)%n]); 
		}
		else{
			p1=poly[i]; 
			p2=poly[(i+1)%n];
			p=GetLineIntersection(p1,p2-p1,a,b-a);
			points.push_back(p); 
			result[pre].push_back(p); 
			result[cur].push_back(p); 
			result[cur].push_back(poly[(i+1)%n]); 
			pre=cur;
		}
	}
	sort(points.begin(),points.end());
	if(points.size()<2){
		return 0; 
	}
	else{
		return Length(points.front()-points.back());
	}
}
double DistanceToSegment(Point p,Segment s){//点到线段的距离
	if(s.a==s.b) return Length(p-s.a);
	Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b;
	if(dcmp(Dot(v1,v2))<0) return Length(v2);
	else if(dcmp(Dot(v1,v3))>0) return Length(v3);
	else return fabs(Cross(v1,v2))/Length(v1);
}
inline bool isPointOnSegment(const Point& p,const Segment& s){
	return dcmp(Cross(s.a-p,s.b-p))==0&&dcmp(Dot(s.a-p,s.b-p))<0;
}
int isPointInPolygon(Point p, Point* poly,int n){//点与多边形的位置关系
	int wn=0;
	for(int i=0;i<n;i++){
		Point& p2=poly[(i+1)%n];
		if(isPointOnSegment(p,Segment(poly[i],p2))) return -1;//点在边界上
		int k=dcmp(Cross(p2-poly[i],p-poly[i]));
		int d1=dcmp(poly[i].y-p.y);
		int d2=dcmp(p2.y-p.y);
		if(k>0&&d1<=0&&d2>0)wn++;
		if(k<0&&d2<=0&&d1>0)wn--;
	}
	if(wn) return 1;//点在内部
	else return 0;//点在外部
}
double PolygonArea(Point* p,int n){//多边形有向面积
	double area=0;
	for(int i=1;i<n-1;i++)
		area+=Cross(p[i]-p[0],p[i+1]-p[0]);
	return area/2;
}
int GetLineCircleIntersection(Line L,Circle C,Point& p1,Point& p2){//圆与直线交点 返回交点个数
	double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y-C.c.y;
	double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -C.r*C.r;
	double delta = f*f - 4*e*g;
	if(dcmp(delta) < 0)  return 0;//相离
	if(dcmp(delta) == 0) {//相切
		p1=p1=L.p+L.v*(-f/(2*e));
		return 1;
	}//相交
	p1=(L.p+L.v*(-f-sqrt(delta))/(2*e));
	p2=(L.p+L.v*(-f+sqrt(delta))/(2*e));
	return 2;
}
double rotating_calipers(Point *ch,int n)//旋转卡壳
{
	int q=1;
	double ans=0;
	ch[n]=ch[0];
	for(int p=0;p<n;p++)
	{
		while(Cross(ch[q+1]-ch[p+1],ch[p]-ch[p+1])>Cross(ch[q]-ch[p+1],ch[p]-ch[p+1]))
			q=(q+1)%n;
		ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
	}
	return ans;
}
Polygon CutPolygon(Polygon poly,const Point& a,const Point& b){//用a->b切割多边形 返回左侧
	Polygon newpoly;
	int n=poly.size();
	for(int i=0;i<n;i++){
		Point c=poly[i];
		Point d=poly[(i+1)%n];
		if(dcmp(Cross(b-a,c-a))>=0) newpoly.push_back(c);
		if(dcmp(Cross(b-a,c-d))!=0){
			Point ip=GetLineIntersection(a,b-a,c,d-c);
			if(isPointOnSegment(ip,Segment(c,d))) newpoly.push_back(ip);
		}
	}
	return newpoly;
}
int GetCircleCircleIntersection(Circle c1,Circle c2,Point& p1,Point& p2){//求两圆相交
	double d=Length(c1.c-c2.c);
	if(dcmp(d)==0){
		if(dcmp(c1.r-c2.r)==0) return -1;//两圆重合
		return 0;
	}
	if(dcmp(c1.r+c2.r-d)<0) return 0;
	if(dcmp(fabs(c1.r-c2.r)-d)>0) return 0;
	double a=Angle(c2.c-c1.c,Vector(1,0));
	double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
	p1=c1.point(a-da);p2=c1.point(a+da);
	if(p1==p2) return 1;
	return 2;
}
inline bool isPointOnleft(Point p,Line L){return dcmp(Cross(L.v,p-L.p))>0;}//点在直线左边 线上不算
int HalfplaneIntersection(Line *L,int n,Point* poly){//半平面交
	sort(L,L+n);
	int first,last;
	Point* p=new Point[n];
	Line* q=new Line[n];
	q[first=last=0]=L[0];
	for(int i=1;i<n;i++){
		while(first<last&&!isPointOnleft(p[last-1],L[i])) last--;
		while(first<last&&!isPointOnleft(p[first],L[i])) first++;
		q[++last]=L[i];
		if(dcmp(Cross(q[last].v,q[last-1].v))==0){
			last--;
			if(isPointOnleft(L[i].p,q[last])) q[last]=L[i];
		}
		if(first<last) p[last-1]=GetLineIntersection(q[last-1].p,q[last-1].v,q[last].p,q[last].v);
	}
	while(first<last&&!isPointOnleft(p[last-1],q[first])) last--;
	if(last-first<=1) return 0;
	p[last]=GetLineIntersection(q[last].p,q[last].v,q[first].p,q[first].v);
	int m=0;
	for(int i=first;i<=last;i++) poly[m++]=p[i];
	return m;
}
//两点式化为一般式A = b.y-a.y, B = a.x-b.x, C = -a.y*(B)-a.x*(A);
//--------------------------------------
//--------------------------------------
//--------------------------------------
//--------------------------------------
//--------------------------------------
void CirclePointTangent(Point poi, Point o, double r, Point &result1,Point &result2) {
	double line = sqrt(
		(poi.x - o.x) * (poi.x - o.x) + (poi.y - o.y) * (poi.y - o.y));
	double angle = acos(r / line);
	Point unitvector, lin;
	lin.x = poi.x - o.x;
	lin.y = poi.y - o.y;
	unitvector.x = lin.x / sqrt(lin.x * lin.x + lin.y * lin.y) * r;
	unitvector.y = lin.y / sqrt(lin.x * lin.x + lin.y * lin.y) * r;
	result1 = Rotate(unitvector, -angle);
	result2 = Rotate(unitvector, angle);
	result1.i=result2.i=o.i;
	result1.x += o.x;
	result1.y += o.y;
	result2.x += o.x;
	result2.y += o.y;
	return;
}

Point P[32010];
Point tri[160];
Point cir[60];
Point ch[32000];
int main(){
	int n,m;
	while(scanf("%d%d",&n,&m)!=EOF){
		if(n==1 && m==0){  
			double s,d,g;  
			scanf("%lf %lf %lf",&s,&d,&g);  
			double xx = 2 *PI* g;  
			printf("%.5lf\n",xx);  
			continue;  
		}
		int idx=0,tridx=0;
		for(int i=0;i<n;i++){
			double x,y,r;
			scanf("%lf%lf%lf",&x,&y,&r);
			cir[i].x=x;
			cir[i].y=y;
			cir[i].i=i;
			cir[i].R=r;
		}
		for(int i=0;i<m;i++){
			for(int k=0;k<3;k++){
				double x,y;
				scanf("%lf%lf",&x,&y);
				P[idx].x=x;
				P[idx].y=y;
				P[idx].i=-1;
				Point temp=P[idx++];
				for(int i=0;i<n;i++){
					Point p1,p2;
					CirclePointTangent(temp,cir[i],cir[i].R,p1,p2);
					P[idx++]=p1;
					P[idx++]=p2;
				}
			}
		}
		for(int i=0;i<n;i++){
			for(int j=i+1;j<n;j++){
				Point c1=cir[i],c2=cir[j];
				if (dcmp(c1.R-c2.R) > 0) {
					swap(c1, c2);
				}
				double c2c = Length(c1-c2);
				double height = c2.R - c1.R;
				double alpha = asin(height / c2c) + PI / 2;
				Point v1, v2, tmp;
				v1 = c2 - c1;
				double len = Length(v1- Point(0, 0));
				v1.x /= len;
				v1.y /= len;
				v2 = Rotate(v1, alpha);
				tmp = v2 * c1.R + c1;
				tmp.i = c1.i;
				P[idx++]=tmp;
				tmp = v2 * c2.R + c2;
				tmp.i = c2.i;
				P[idx++]=tmp;
				v2 = Rotate(v1, -alpha);
				tmp = v2 * c1.R+ c1;
				tmp.i = c1.i;
				P[idx++]=tmp;
				tmp = v2 * c2.R + c2;
				tmp.i = c2.i;
				P[idx++]=tmp;
			}
		}
		int count=ConvexHull(P,idx,ch);
		double ans=0;
		for(int i=0;i<count;i++){
			const Point& a=ch[i];
			const Point& b=ch[(i+1)%count];
			if(a.i!=-1&&a.i==b.i){
				Vector tt=a-cir[a.i];
				double ang=Angle(a-cir[a.i],b-cir[a.i]);
				ans+=ang*cir[a.i].R;
			}
			else ans+=Length(a-b);
		}
		printf("%.5lf\n",ans);
	}
	return 0;
}


 

你可能感兴趣的:(2013 多校第七场 hdu 4667 Building Fence)