一、核心数据结构
http://www.cublog.cn/u3/109117/article.html
串口驱动有3个核心数据结构,它们都定义在<#include linux/serial_core.h>
1、uart_driver
uart_driver包含了串口设备名、串口驱动名、主次设备号、串口控制台(可选)等信息,还封装了tty_driver(底层串口驱动无需关心tty_driver)。
struct uart_driver {
struct module *owner; /* 拥有该uart_driver的模块,一般为THIS_MODULE */
const char *driver_name; /* 串口驱动名,串口设备文件名以驱动名为基础 */
const char *dev_name; /* 串口设备名 */
int major; /* 主设备号 */
int minor; /* 次设备号 */
int nr; /* 该uart_driver支持的串口个数(最大) */
struct console *cons; /* 其对应的console.若该uart_driver支持serial console,否则为NULL */
/*
* these are private; the low level driver should not
* touch these; they should be initialised to NULL
*/
struct uart_state *state;
struct tty_driver *tty_driver;
};
2、uart_port
uart_port用于描述串口端口的I/O端口或I/O内存地址、FIFO大小、端口类型、串口时钟等信息。实际上,一个uart_port实例对应一个串口设备
struct uart_port {
spinlock_t lock; /* 串口端口锁 */
unsigned int iobase; /* IO端口基地址 */
unsigned char __iomem *membase; /* IO内存基地址,经映射(如ioremap)后的IO内存虚拟基地址 */
unsigned int irq; /* 中断号 */
unsigned int uartclk; /* 串口时钟 */
unsigned int fifosize; /* 串口FIFO缓冲大小 */
unsigned char x_char; /* xon/xoff字符 */
unsigned char regshift; /* 寄存器位移 */
unsigned char iotype; /* IO访问方式 */
unsigned char unused1;
#define UPIO_PORT (0) /* IO端口 */
#define UPIO_HUB6 (1)
#define UPIO_MEM (2) /* IO内存 */
#define UPIO_MEM32 (3)
#define UPIO_AU (4) /* Au1x00 type IO */
#define UPIO_TSI (5) /* Tsi108/109 type IO */
#define UPIO_DWAPB (6) /* DesignWare APB UART */
#define UPIO_RM9000 (7) /* RM9000 type IO */
unsigned int read_status_mask; /* 关心的Rx error status */
unsigned int ignore_status_mask;/* 忽略的Rx error status */
struct uart_info *info; /* pointer to parent info */
struct uart_icount icount; /* 计数器 */
struct console *cons; /* console结构体 */
#ifdef CONFIG_SERIAL_CORE_CONSOLE
unsigned long sysrq; /* sysrq timeout */
#endif
upf_t flags;
#define UPF_FOURPORT ((__force upf_t) (1 << 1))
#define UPF_SAK ((__force upf_t) (1 << 2))
#define UPF_SPD_MASK ((__force upf_t) (0x1030))
#define UPF_SPD_HI ((__force upf_t) (0x0010))
#define UPF_SPD_VHI ((__force upf_t) (0x0020))
#define UPF_SPD_CUST ((__force upf_t) (0x0030))
#define UPF_SPD_SHI ((__force upf_t) (0x1000))
#define UPF_SPD_WARP ((__force upf_t) (0x1010))
#define UPF_SKIP_TEST ((__force upf_t) (1 << 6))
#define UPF_AUTO_IRQ ((__force upf_t) (1 << 7))
#define UPF_HARDPPS_CD ((__force upf_t) (1 << 11))
#define UPF_LOW_LATENCY ((__force upf_t) (1 << 13))
#define UPF_BUGGY_UART ((__force upf_t) (1 << 14))
#define UPF_MAGIC_MULTIPLIER ((__force upf_t) (1 << 16))
#define UPF_CONS_FLOW ((__force upf_t) (1 << 23))
#define UPF_SHARE_IRQ ((__force upf_t) (1 << 24))
#define UPF_BOOT_AUTOCONF ((__force upf_t) (1 << 28))
#define UPF_FIXED_PORT ((__force upf_t) (1 << 29))
#define UPF_DEAD ((__force upf_t) (1 << 30))
#define UPF_IOREMAP ((__force upf_t) (1 << 31))
#define UPF_CHANGE_MASK ((__force upf_t) (0x17fff))
#define UPF_USR_MASK ((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY))
unsigned int mctrl; /* 当前的moden设置 */
unsigned int timeout; /* character-based timeout */
unsigned int type; /* 端口类型 */
const struct uart_ops *ops; /* 串口端口操作函数集 */
unsigned int custom_divisor;
unsigned int line; /* 端口索引 */
resource_size_t mapbase; /* IO内存物理基地址,可用于ioremap */
struct device *dev; /* 父设备 */
unsigned char hub6; /* this should be in the 8250 driver */
unsigned char suspended;
unsigned char unused[2];
void *private_data; /* 端口私有数据,一般为platform数据指针 */
};
uart_iconut为串口信息计数器,包含了发送字符计数、接收字符计数等。在串口的发送中断处理函数和接收中断处理函数中,我们需要管理这些计数。
struct uart_icount {
__u32 cts;
__u32 dsr;
__u32 rng;
__u32 dcd;
__u32 rx; /* 发送字符计数 */
__u32 tx; /* 接受字符计数 */
__u32 frame; /* 帧错误计数 */
__u32 overrun; /* Rx FIFO溢出计数 */
__u32 parity; /* 帧校验错误计数 */
__u32 brk; /* break计数 */
__u32 buf_overrun;
};
uart_info有两个成员在底层串口驱动会用到:xmit和tty。用户空间程序通过串口发送数据时,上层驱动将用户数据保存在xmit;而串口发送中断处理函数就是通过xmit获取到用户数据并将它们发送出去。串口接收中断处理函数需要通过tty将接收到的数据传递给行规则层。
/* uart_info实例仅在串口端口打开时有效,它可能在串口关闭时被串口核心层释放。因此,在使用uart_port的uart_info成员时必须保证串口已打开。底层驱动和核心层驱动都可以修改uart_info实例。
* This is the state information which is only valid when the port
* is open; it may be freed by the core driver once the device has
* been closed. Either the low level driver or the core can modify
* stuff here.
*/
struct uart_info {
struct tty_struct *tty;
struct circ_buf xmit;
uif_t flags;
/*
* Definitions for info->flags. These are _private_ to serial_core, and
* are specific to this structure. They may be queried by low level drivers.
*/
#define UIF_CHECK_CD ((__force uif_t) (1 << 25))
#define UIF_CTS_FLOW ((__force uif_t) (1 << 26))
#define UIF_NORMAL_ACTIVE ((__force uif_t) (1 << 29))
#define UIF_INITIALIZED ((__force uif_t) (1 << 31))
#define UIF_SUSPENDED ((__force uif_t) (1 << 30))
int blocked_open;
struct tasklet_struct tlet;
wait_queue_head_t open_wait;
wait_queue_head_t delta_msr_wait;
};
3、uart_ops
uart_ops涵盖了串口驱动可对串口设备进行的所有操作。
/*
* This structure describes all the operations that can be
* done on the physical hardware.
*/
struct uart_ops {
unsigned int (*tx_empty)(struct uart_port *); /* 串口的Tx FIFO缓存是否为空 */
void (*set_mctrl)(struct uart_port *, unsigned int mctrl); /* 设置串口modem控制 */
unsigned int (*get_mctrl)(struct uart_port *); /* 获取串口modem控制 */
void (*stop_tx)(struct uart_port *); /* 禁止串口发送数据 */
void (*start_tx)(struct uart_port *); /* 使能串口发送数据 */
void (*send_xchar)(struct uart_port *, char ch);/* 发送xChar */
void (*stop_rx)(struct uart_port *); /* 禁止串口接收数据 */
void (*enable_ms)(struct uart_port *); /* 使能modem的状态信号 */
void (*break_ctl)(struct uart_port *, int ctl); /* 设置break信号 */
int (*startup)(struct uart_port *); /* 启动串口,应用程序打开串口设备文件时,该函数会被调用 */
void (*shutdown)(struct uart_port *); /* 关闭串口,应用程序关闭串口设备文件时,该函数会被调用 */
void (*set_termios)(struct uart_port *, struct ktermios *new, struct ktermios *old); /* 设置串口参数 */
void (*pm)(struct uart_port *, unsigned int state,
unsigned int oldstate); /* 串口电源管理 */
int (*set_wake)(struct uart_port *, unsigned int state); /* */
const char *(*type)(struct uart_port *); /* 返回一描述串口类型的字符串 */
void (*release_port)(struct uart_port *); /* 释放串口已申请的IO端口/IO内存资源,必要时还需iounmap */
int (*request_port)(struct uart_port *); /* 申请必要的IO端口/IO内存资源,必要时还可以重新映射串口端口 */
void (*config_port)(struct uart_port *, int); /* 执行串口所需的自动配置 */
int (*verify_port)(struct uart_port *, struct serial_struct *); /* 核实新串口的信息 */
int (*ioctl)(struct uart_port *, unsigned int, unsigned long); /* IO控制 */
};
二、串口驱动API
1、uart_register_driver
/* 功能: uart_register_driver用于将串口驱动uart_driver注册到内核(串口核心层)中,通常在模块初始化函数调用该函数。
* 参数 drv:要注册的uart_driver
* 返回值: 成功,返回0;否则返回错误码
*/
int uart_register_driver(struct uart_driver *drv)
2、uart_unregister_driver
/* 功能: uart_unregister_driver用于注销我们已注册的uart_driver,通常在模块卸载函数调用该函数
* 参数 drv:要注销的uart_driver
* 返回值: 成功,返回0;否则返回错误码
*/
void uart_unregister_driver(struct uart_driver *drv)
3、uart_add_one_port
/* 功能: uart_add_one_port用于为串口驱动添加一个串口端口,通常在探测到设备后(驱动的设备probe方法)调用该函数
* 参数 drv:串口驱动
* port:要添加的串口端口
* 返回值: 成功,返回0;否则返回错误码
*/
int uart_add_one_port(struct uart_driver *drv, struct uart_port *port)
4、uart_remove_one_port
/* 功能: uart_remove_one_port用于删除一个已添加到串口驱动中的串口端口,通常在驱动卸载时调用该函数
* 参数 drv: 串口驱动
* port: 要删除的串口端口
* 返回值: 成功,返回0;否则返回错误码
*/
int uart_remove_one_port(struct uart_driver *drv, struct uart_port *port)
5、uart_write_wakeup
/* 功能: uart_write_wakeup唤醒上层因向串口端口写数据而阻塞的进程,通常在串口发送中断处理函数中调用该函数
* 参数 port:需要唤醒写阻塞进程的串口端口
*/
void uart_write_wakeup(struct uart_port *port)
6、uart_suspend_port
/* 功能: uart_suspend_port用于挂起特定的串口端口
* 参数 drv: 要挂起的串口端口所属的串口驱动
* port:要挂起的串口端口
* 返回值: 成功返回0;否则返回错误码
*/
int uart_suspend_port(struct uart_driver *drv, struct uart_port *port)
7、uart_resume_port
/* 功能: uart_resume_port用于恢复某一已挂起的串口
* 参数 drv: 要恢复的串口端口所属的串口驱动
* port:要恢复的串口端口
* 返回值: 成功返回0;否则返回错误码
*/
int uart_resume_port(struct uart_driver *drv, struct uart_port *port)
8、uart_get_baud_rate
/* 功能: uart_get_baud_rate通过解码termios结构体来获取指定串口的波特率
* 参数 port: 要获取波特率的串口端口
* termios:当前期望的termios配置(包含串口波特率)
* old: 以前的termios配置,可以为NULL
* min: 可接受的最小波特率
* max: 可接受的最大波特率
* 返回值: 串口的波特率
*/
unsigned int
uart_get_baud_rate(struct uart_port *port, struct ktermios *termios,
struct ktermios *old, unsigned int min, unsigned int max)
9、uart_get_divisor
/* 功能: uart_get_divisor用于计算某一波特率的串口时钟分频数(串口波特率除数)
* 参数 port:要计算时钟分频数的串口端口
* baud:期望的波特率
*返回值: 串口时钟分频数
*/
unsigned int uart_get_divisor(struct uart_port *port, unsigned int baud)
10、uart_update_timeout
/* 功能: uart_update_timeout用于更新(设置)串口FIFO超时时间
* 参数 port: 要更新超时时间的串口端口
* cflag:termios结构体的cflag值
* baud: 串口的波特率
*/
void uart_update_timeout(struct uart_port *port, unsigned int cflag, unsigned int baud)
11、uart_match_port
/* 功能:uart_match_port用于判断两串口端口是否为同一端口
* 参数 port1、port2:要判断的串口端口
* 返回值:不同返回0;否则返回非0
*/
int uart_match_port(struct uart_port *port1, struct uart_port *port2)
12、uart_console_write
/* 功能: uart_console_write用于向串口端口写一控制台信息
* 参数 port: 要写信息的串口端口
* s: 要写的信息
* count: 信息的大小
* putchar: 用于向串口端口写字符的函数,该函数函数有两个参数:串口端口和要写的字符
*/
void uart_console_write(struct uart_port *port, const char *s,
unsigned int count,
void (*putchar)(struct uart_port *, int))
三、串口驱动例子
该串口驱动例子是我针对s3c2410处理器的串口2(uart2)独立开发的。因为我通过博创2410s开发板的GRPS扩展板来测试该驱动(已通过测试),所以我叫该串口为gprs_uart。
该驱动将串口看作平台(platform)设备。platform可以看作一伪总线,用于将集成于片上系统的轻量级设备与Linux设备驱动模型联系到一起,它包含以下两部分(有关platform的声明都在#include <linux/platform_device.h>,具体实现在drivers/base/platform.c):
1、platform设备。我们需要为每个设备定义一个platform_device实例
struct platform_device {
const char *name; /* 设备名 */
int id; /* 设备的id号 */
struct device dev; /* 其对应的device */
u32 num_resources;/* 该设备用有的资源数 */
struct resource *resource; /* 资源数组 */
};
为我们的设备创建platform_device实例有两种方法:填充一个platform_device结构体后用platform_device_register(一次注册一个)或platform_add_devices(一次可以注册多个platform设备)将platform_device注册到内核;更简单的是使用platform_device_register_simple来建立并注册我们的platform_device。
2、platform驱动。platform设备由platform驱动进行管理。当设备加入到系统中时,platform_driver的probe方法会被调用来见对应的设备添加或者注册到内核;当设备从系统中移除时,platform_driver的remove方法会被调用来做一些清理工作,如移除该设备的一些实例、注销一些已注册到系统中去的东西。
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
};
更详细platform资料可参考网上相关文章。
例子驱动中申请和释放IO内存区的整个过程如下:
insmod gprs_uart.ko→gprs_init_module()→uart_register_driver()→gprs_uart_probe()→ uart_add_one_port()→gprs_uart_config_port()→gprs_uart_request_port()→request_mem_region()
rmmod gprs_uart.ko→gprs_exit_module()→uart_unregister_driver()→gprs_uart_remove()→uart_remove_one_port()→gprs_uart_release_port()→release_mem_region()
例子驱动中申请和释放IRQ资源的整个过程如下:
open /dev/gprs_uart→gprs_uart_startup()→request_irq()
close /dev/gprs_uart→gprs_uart_shutdown()→free_irq()
想了解更详细的调用过程可以在驱动模块各函数头插入printk(KERN_DEBUG "%s\n", __FUNCTION__);并在函数尾插入printk(KERN_DEBUG "%s done\n", __FUNCTION__);
下面是串口驱动例子和其GPRS测试程序源码下载地址:
http://www.pudn.com/downloads258/sourcecode/unix_linux/detail1192104.html
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/fcntl.h> /* O_ACCMODE */
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_*_user */
#include <linux/ioctl.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/sysrq.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/console.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/hardware.h>
#include <asm/plat-s3c/regs-serial.h>
#include <asm/arch/regs-gpio.h>
#define DEV_NAME "gprs_uart" /* 设备名 */
/* 这里将串口的主设备号设为0,则串口设备编号由内核动态分配;你也可指定串口的设备编号 */
#define GPRS_UART_MAJOR 0 /* 主设备号 */
#define GPRS_UART_MINOR 0 /* 次设备号 */
#define GPRS_UART_FIFO_SIZE 16 /* 串口FIFO的大小 */
#define RXSTAT_DUMMY_READ (0x10000000)
#define MAP_SIZE (0x100) /* 要映射的串口IO内存区大小 */
/* 串口发送中断号 */
#define TX_IRQ(port) ((port)->irq + 1)
/* 串口接收中断号 */
#define RX_IRQ(port) ((port)->irq)
/* 允许串口接收字符的标志 */
#define tx_enabled(port) ((port)->unused[0])
/* 允许串口发送字符的标志 */
#define rx_enabled(port) ((port)->unused[1])
/* 获取寄存器地址 */
#define portaddr(port, reg) ((port)->membase + (reg))
/* 读8位宽的寄存器 */
#define rd_regb(port, reg) (ioread8(portaddr(port, reg)))
/* 读32位宽的寄存器 */
#define rd_regl(port, reg) (ioread32(portaddr(port, reg)))
/* 写8位宽的寄存器 */
#define wr_regb(port, reg, val) \
do { iowrite8(val, portaddr(port, reg)); } while(0)
/* 写32位宽的寄存器 */
#define wr_regl(port, reg, val) \
do { iowrite32(val, portaddr(port, reg)); } while(0)
/* 禁止串口发送数据 */
static void gprs_uart_stop_tx(struct uart_port *port)
{
if (tx_enabled(port)) /* 若串口已启动发送 */
{
disable_irq(TX_IRQ(port)); /* 禁止发送中断 */
tx_enabled(port) = 0; /* 设置串口为未启动发送 */
}
}
/* 使能串口发送数据 */
static void gprs_uart_start_tx(struct uart_port *port)
{
if (!tx_enabled(port)) /* 若串口未启动发送 */
{
enable_irq(TX_IRQ(port)); /* 使能发送中断 */
tx_enabled(port) = 1; /* 设置串口为已启动发送 */
}
}
/* 禁止串口接收数据 */
static void gprs_uart_stop_rx(struct uart_port *port)
{
if (rx_enabled(port)) /* 若串口已启动接收 */
{
disable_irq(RX_IRQ(port)); /* 禁止接收中断 */
rx_enabled(port) = 0; /* 设置串口为未启动接收 */
}
}
/* 使能modem的状态信号 */
static void gprs_uart_enable_ms(struct uart_port *port)
{
}
/* 串口的Tx FIFO缓存是否为空 */
static unsigned int gprs_uart_tx_empty(struct uart_port *port)
{
int ret = 1;
unsigned long ufstat = rd_regl(port, S3C2410_UFSTAT);
unsigned long ufcon = rd_regl(port, S3C2410_UFCON);
if (ufcon & S3C2410_UFCON_FIFOMODE) /* 若使能了FIFO */
{
if ((ufstat & S3C2410_UFSTAT_TXMASK) != 0 || /* 0 <FIFO <=15 */
(ufstat & S3C2410_UFSTAT_TXFULL)) /* FIFO满 */
ret = 0;
}
else /* 若未使能了FIFO,则判断发送缓存和发送移位寄存器是否均为空 */
{
ret = rd_regl(port, S3C2410_UTRSTAT) & S3C2410_UTRSTAT_TXE;
}
return ret;
}
/* 获取串口modem控制,因为uart2无modem控制,所以CTS、DSR直接返回有效 */
static unsigned int gprs_uart_get_mctrl(struct uart_port *port)
{
return (TIOCM_CTS | TIOCM_DSR | TIOCM_CAR);
}