/* 建立点到汇点的边,边权的点值 抽象边为点(边点),建立源点到边点的边,边权为原的边权 建立边点到其原先连的点的两条边,边权无穷, 求最大流。答案为所有原边权和减去最大流 */ #include <vector> #include <map> #include <set> #include <deque> #include <stack> #include <bitset> #include <algorithm> #include <functional> #include <numeric> #include <utility> #include <sstream> #include <iostream> #include <iomanip> #include <cstdio> #include <queue> #include <cmath> #include <cstdlib> #include <cstring> #include <ctime> #include <string> using namespace std; const int maxn=62000; const int inf=2000000000; //最大流模版 //************************************************************************ struct edge { int v, next; int val; } net[ 500010 ]; int level[maxn], Qu[maxn], out[maxn],next[maxn]; class Dinic { public: int end; Dinic() { end = 0; memset( next, -1, sizeof(next) ); } inline void insert( int x, int y, int c) { net[end].v = y, net[end].val = c, net[end].next = next[x], next[x] = end ++; net[end].v = x, net[end].val = 0, net[end].next = next[y], next[y] = end ++; } bool BFS( int S, int E ) { memset( level, -1, sizeof(level) ); int low = 0, high = 1; Qu[0] = S, level[S] = 0; for( ; low < high; ) { int x = Qu[low]; for( int i = next[x]; i != -1; i = net[i].next ) { if( net[i].val == 0 ) continue; int y = net[i].v; if( level[y] == -1 ) { level[y] = level[x] + 1; Qu[ high ++] = y; } } low ++; } return level[E] != -1; } int MaxFlow( int S, int E ){ int maxflow = 0; for( ; BFS(S, E) ; ) { memcpy( out, next, sizeof(out) ); int now = -1; for( ;; ) { if( now < 0 ) { int cur = out[S]; for(; cur != -1 ; cur = net[cur].next ) if( net[cur].val && out[net[cur].v] != -1 && level[net[cur].v] == 1 ) break; if( cur >= 0 ) Qu[ ++now ] = cur, out[S] = net[cur].next; else break; } int u = net[ Qu[now] ].v; if( u == E ) { int flow = inf; int index = -1; for( int i = 0; i <= now; i ++ ) { if( flow > net[ Qu[i] ].val ) flow = net[ Qu[i] ].val, index = i; } maxflow += flow; for( int i = 0; i <= now; i ++ ) net[Qu[i]].val -= flow, net[Qu[i]^1].val += flow; for( int i = 0; i <= now; i ++ ) { if( net[ Qu[i] ].val == 0 ) { now = index - 1; break; } } } else{ int cur = out[u]; for(; cur != -1; cur = net[cur].next ) if (net[cur].val && out[net[cur].v] != -1 && level[u] + 1 == level[net[cur].v]) break; if( cur != -1 ) Qu[++ now] = cur, out[u] = net[cur].next; else out[u] = -1, now --; } } } return maxflow; } }; //************************************************************************ int n,m,tmp; int main() { while(scanf("%d%d",&n,&m)!=EOF) { Dinic my; int sum=0; for(int i=1;i<=n;i++) { scanf("%d",&tmp); my.insert(i,0,tmp);//0为汇点 } int a,b,c; for(int i=1;i<=m;i++) { scanf("%d%d%d",&a,&b,&c); my.insert(i+n,b,inf); my.insert(i+n,a,inf); my.insert(n+m+1,i+n,c);//n+m+1为源点 sum+=c; } printf("%d\n",sum-my.MaxFlow(m+n+1,0)); } }