PSNR以及SSIM



PSNR(Peak Signal to Noise Ratio)峰值信噪比,一种全参考的图像质量评价指标。

PSNR以及SSIM_第1张图片

其中,MSE表示当前图像X和参考图像Y的均方误差(Mean Square Error),H、W分别为图像的高度和宽度;n为每像素的比特数,一般取8,即像素灰阶数为256. PSNR的单位是dB,数值越大表示失真越小。图像压缩中典型的信噪比在20~40dB之间,越高越好。

PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。

 

SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。

其中ux、uy分别表示图像X和Y的均值,σX、σY分别表示图像X和Y的方差,σXY表示图像X和Y的协方差,即

PSNR以及SSIM_第2张图片

C1、C2、C3为常数,为了避免分母为0的情况,通常取C1=(K1*L)^2, C2=(K2*L)^2, C3=C2/2, 一般地K1=0.01, K2=0.03, L=255. 则

SSIM取值范围[0,1],值越大,表示图像失真越小.

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:



你可能感兴趣的:(PSNR以及SSIM)