共同点:
HashMap,LinkedHashMap,TreeMap都属于Map;Map 主要用于存储键(key)值(value)对,根据键得到值,因此键不允许键重复,但允许值重复。1.HashMap里面存入的键值对在取出的时候是随机的,也是我们最常用的一个Map.它根据键的HashCode值存储数据,根据键可以直接获取它的值,具有很快的访问速度。在Map 中插入、删除和定位元素,HashMap 是最好的选择。
2.TreeMap取出来的是排序后的键值对。但如果您要按自然顺序或自定义顺序遍历键,那么TreeMap会更好。
3. LinkedHashMap 是HashMap的一个子类,如果需要输出的顺序和输入的相同,那么用LinkedHashMap可以实现.
/** * Constructs an empty <tt>HashMap</tt> with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR;//默认加载因子,加载因子是一个比例,当HashMap的数据大小>=容量*加载因子时,HashMap会将容量扩容 threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); table = new Entry[DEFAULT_INITIAL_CAPACITY];//数组来存储数据 init(); }
/** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt>. * (A <tt>null</tt> return can also indicate that the map * previously associated <tt>null</tt> with <tt>key</tt>.) */ public V put(K key, V value) { if (key == null) return putForNullKey(value); int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; }看addEntry
/** * Adds a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K,V>(hash, key, value, e); if (size++ >= threshold) resize(2 * table.length); }看resize
/** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)(newCapacity * loadFactor); }看transfer
/** * Transfers all entries from current table to newTable. */ void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry<K,V> e = src[j]; if (e != null) { src[j] = null; do { Entry<K,V> next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } }
/** * Maps the specified <code>key</code> to the specified * <code>value</code> in this hashtable. Neither the key nor the * value can be <code>null</code>. <p> * * The value can be retrieved by calling the <code>get</code> method * with a key that is equal to the original key. * * @param key the hashtable key * @param value the value * @return the previous value of the specified key in this hashtable, * or <code>null</code> if it did not have one * @exception NullPointerException if the key or value is * <code>null</code> * @see Object#equals(Object) * @see #get(Object) */ public synchronized V put(K key, V value) { // Make sure the value is not null if (value == null) { throw new NullPointerException(); } // Makes sure the key is not already in the hashtable. Entry tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { V old = e.value; e.value = value; return old; } } modCount++; if (count >= threshold) { // Rehash the table if the threshold is exceeded rehash(); tab = table; index = (hash & 0x7FFFFFFF) % tab.length; } // Creates the new entry. Entry<K,V> e = tab[index]; tab[index] = new Entry<K,V>(hash, key, value, e); count++; return null; }
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>
/** * Called by superclass constructors and pseudoconstructors (clone, * readObject) before any entries are inserted into the map. Initializes * the chain. */ void init() { header = new Entry<K,V>(-1, null, null, null); header.before = header.after = header; }
/** * LinkedHashMap entry. */ private static class Entry<K,V> extends HashMap.Entry<K,V> { // These fields comprise the doubly linked list used for iteration. Entry<K,V> before, after; Entry(int hash, K key, V value, HashMap.Entry<K,V> next) { super(hash, key, value, next); }
/** * This override alters behavior of superclass put method. It causes newly * allocated entry to get inserted at the end of the linked list and * removes the eldest entry if appropriate. */ void addEntry(int hash, K key, V value, int bucketIndex) { createEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed, else grow capacity if appropriate Entry<K, V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } else { if (size >= threshold) resize(2 * table.length); } } /** * This override differs from addEntry in that it doesn't resize the * table or remove the eldest entry. */ void createEntry(int hash, K key, V value, int bucketIndex) { HashMap.Entry<K, V> old = table[bucketIndex]; Entry<K, V> e = new Entry<K, V>(hash, key, value, old); table[bucketIndex] = e; e.addBefore(header); size++; } /** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K, V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; }
/** * Map用于存储键值对,不允许键重复,值可以重复。 * (1)HashMap是一个最常用的Map,它根据键的hashCode值存储数据,根据键可以直接获取它的值,具有很快的访问速度。 * HashMap最多只允许一条记录的键为null,允许多条记录的值为null。 * HashMap不支持线程的同步,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。 * 如果需要同步,可以用Collections.synchronizedMap(HashMap map)方法使HashMap具有同步的能力。 * (2)Hashtable与HashMap类似,不同的是:它不允许记录的键或者值为空; * 它支持线程的同步,即任一时刻只有一个线程能写Hashtable,然而,这也导致了Hashtable在写入时会比较慢。 * (3)LinkedHashMap保存了记录的插入顺序,在用Iteraor遍历LinkedHashMap时,先得到的记录肯定是先插入的。 * 在遍历的时候会比HashMap慢。 * (4)TreeMap能够把它保存的记录根据键排序,默认是按升序排序,也可以指定排序的比较器。当用Iteraor遍历TreeMap时, * 得到的记录是排过序的。 */ import java.util.HashMap; import java.util.Hashtable; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.Map; import java.util.TreeMap; /** * 演示各个Map的实现类 */ public class TestMap { /** * 初始化一个Map * @param map */ public static void init(Map map){ if (map != null){ String key = null; for (int i=5; i>0; i--){ key = new Integer(i).toString() + ".0"; map.put(key, key.toString()); //Map中的键是不重复的,如果插入两个键值一样的记录, //那么后插入的记录会覆盖先插入的记录 map.put(key, key.toString() + "0"); } } } /** * 输出一个Map * @param map */ public static void output(Map map){ if (map != null){ Object key = null; Object value = null; //使用迭代器遍历Map的键,根据键取值 Iterator it = map.keySet().iterator(); while (it.hasNext()){ key = it.next(); value = map.get(key); System.out.println("key: " + key + "; value: " + value ); } //或者使用迭代器遍历Map的记录Map.Entry Map.Entry entry = null; it = map.entrySet().iterator(); while (it.hasNext()){ //一个Map.Entry代表一条记录 entry = (Map.Entry)it.next(); //通过entry可以获得记录的键和值 //System.out.println("key: " + entry.getKey() + "; value: " + entry.getValue()); } } } /** * 判断map是否包含某个键 * @param map * @param key * @return */ public static boolean containsKey(Map map, Object key){ if (map != null){ return map.containsKey(key); } return false; } /** * 判断map是否包含某个值 * @param map * @param value * @return */ public static boolean containsValue(Map map, Object value){ if (map != null){ return map.containsValue(value); } return false; } /** * 演示HashMap */ public static void testHashMap(){ Map myMap = new HashMap(); init(myMap); //HashMap的键可以为null myMap.put(null,"ddd"); //HashMap的值可以为null myMap.put("aaa", null); output(myMap); } /** * 演示Hashtable */ public static void testHashtable(){ Map myMap = new Hashtable(); init(myMap); //Hashtable的键不能为null //myMap.put(null,"ddd"); //Hashtable的值不能为null //myMap.put("aaa", null); output(myMap); } /** * 演示LinkedHashMap */ public static void testLinkedHashMap(){ Map myMap = new LinkedHashMap(); init(myMap); //LinkedHashMap的键可以为null myMap.put(null,"ddd"); //LinkedHashMap的值可以为null myMap.put("aaa", null); output(myMap); } /** * 演示TreeMap */ public static void testTreeMap(){ Map myMap = new TreeMap(); init(myMap); //TreeMap的键不能为null //myMap.put(null,"ddd"); //TreeMap的值不能为null //myMap.put("aaa", null); output(myMap); } public static void main(String[] args) { System.out.println("采用HashMap"); TestMap.testHashMap(); System.out.println("采用Hashtable"); TestMap.testHashtable(); System.out.println("采用LinkedHashMap"); TestMap.testLinkedHashMap(); System.out.println("采用TreeMap"); TestMap.testTreeMap(); Map myMap = new HashMap(); TestMap.init(myMap); System.out.println("新初始化一个Map: myMap"); TestMap.output(myMap); //清空Map myMap.clear(); System.out.println("将myMap clear后,myMap空了么? " + myMap.isEmpty()); TestMap.output(myMap); myMap.put("aaa", "aaaa"); myMap.put("bbb", "bbbb"); //判断Map是否包含某键或者某值 System.out.println("myMap包含键aaa? "+ TestMap.containsKey(myMap, "aaa")); System.out.println("myMap包含值aaaa? "+ TestMap.containsValue(myMap, "aaaa")); //根据键删除Map中的记录 myMap.remove("aaa"); System.out.println("删除键aaa后,myMap包含键aaa? "+ TestMap.containsKey(myMap, "aaa")); //获取Map的记录数 System.out.println("myMap包含的记录数: " + myMap.size()); } }