矩阵乘法
#include <bits/stdc++.h> #define LL long long #define MOD 1000000007 using namespace std; LL MMM(int a, int b) { return ((a%MOD)*(LL)(b%MOD))%MOD; } LL x[4], a[4], t[4]; LL* mult(LL *a,LL *b) { x[0]=MMM(a[0],b[0])+MMM(a[1],b[2]); x[0]%=MOD; x[1]=MMM(a[0],b[1])+MMM(a[1],b[3]); x[1]%=MOD; x[2]=MMM(a[2],b[0])+MMM(a[3],b[2]); x[2]%=MOD; x[3]=MMM(a[2],b[1])+MMM(a[3],b[3]); x[3]%=MOD; return x; } void print(LL *a) { cout<<a[0]<<" "<<a[1]<<endl; cout<<a[2]<<" "<<a[3]<<endl; } LL e[4]={1,0,0,1}; LL s[4]={0,-1,1,1}; void eq(LL *a,LL *b) { for (int i=0;i<4;i++) a[i]=b[i]; } int main() { int T, p; long long f1, f2; cin>>T; for(int I=1; I<=T; I++){ cin>>f1>>f2; cin>>p;p--; eq(t, s); if (p%2==0){ eq(a, e); } else { eq(a, t); } p=p>>1; while (p>0) { eq(t,mult(t,t)); if (p%2==1){eq(a,mult(a,t));} p=p>>1; } long long ans = ((f1*a[0]+MOD)%MOD + (f2*a[2]+MOD)%MOD+MOD)%MOD; if (ans<0) {cout<<ans+MOD<<endl; }else{cout<<ans<<endl;} } return 0; }