项目三-图遍历算法实现

/*
*2015,烟台大学计算机与控制工程学院
*All rights reserved
*文件名称:graph.cpp
*作者:邱暖
*完成日期:2015年11月16日
*问题描述:实现图遍历算法,分别输出入图结构的深度优先遍历序列和广度优先遍历序列。
*
*<img src="http://img.blog.csdn.net/20151116171329305?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
*/
(1)利用图算法库
#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED
#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G




#endif // GRAPH_H_INCLUDED

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一条边
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
    int i,j;
    ArcNode *p;
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
    g.n=G->n;
    g.e=G->e;
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}
<pre class="cpp" name="code">(2)深度优先遍历序列
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];
void DFS(ALGraph *G, int v)
{
    ArcNode *p;
    int w;
    visited[v]=1;
    printf("%d ", v);
    p=G->adjlist[v].firstarc;
    while (p!=NULL)
    {
        w=p->adjvex;
        if (visited[w]==0)
            DFS(G,w);
        p=p->nextarc;
    }
}

int main()
{
    int i;
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };
    ArrayToList(A[0], 5, G);

    for(i=0; i<MAXV; i++) visited[i]=0;
    printf(" 由2开始深度遍历:");
    DFS(G, 2);
    printf("\n");

    for(i=0; i<MAXV; i++) visited[i]=0;
    printf(" 由0开始深度遍历:");
    DFS(G, 0);
    printf("\n");
    return 0;
}
(3)运行结果
<img src="http://img.blog.csdn.net/20151116171913043" alt="" />
(3)广度优先遍历序列
#include <stdio.h>
#include <malloc.h>
#include "graph.h"

void BFS(ALGraph *G, int v)
{
    ArcNode *p;
    int w,i;
    int queue[MAXV],front=0,rear=0; //定义循环队列
    int visited[MAXV];     //定义存放节点的访问标志的数组
    for (i=0; i<G->n; i++) visited[i]=0; //访问标志数组初始化
    printf("%2d",v);            //输出被访问顶点的编号
    visited[v]=1;                       //置已访问标记
    rear=(rear+1)%MAXV;
    queue[rear]=v;              //v进队
    while (front!=rear)         //若队列不空时循环
    {
        front=(front+1)%MAXV;
        w=queue[front];             //出队并赋给w
        p=G->adjlist[w].firstarc;   //找w的第一个的邻接点
        while (p!=NULL)
        {
            if (visited[p->adjvex]==0)
            {
                printf("%2d",p->adjvex); //访问之
                visited[p->adjvex]=1;
                rear=(rear+1)%MAXV; //该顶点进队
                queue[rear]=p->adjvex;
            }
            p=p->nextarc;       //找下一个邻接顶点
        }
    }
    printf("\n");
}


int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };
    ArrayToList(A[0], 5, G);

    printf(" 由2开始广度遍历:");
    BFS(G, 2);

    printf(" 由0开始广度遍历:");
    BFS(G, 0);
    return 0;
}
(4)运行结果
<img src="http://img.blog.csdn.net/20151116172142244" alt="" />
学习心得:
图的遍历算法无论是深度还是广度都有一定的过程,这个过程一定要了解清楚。
 

你可能感兴趣的:(项目三-图遍历算法实现)